Abstract:
Induction heating apparatus are disclosed herein. An example induction heating apparatus disclosed herein includes a housing and a susceptor wire positioned in the housing. The susceptor wire is composed of a material having a relatively high magnetic permeability and a relatively high electrical resistivity sufficient to induce an eddy current in the susceptor wire when a magnetic field is applied to the susceptor wire via an induction source. The magnetic field generates the eddy current in the susceptor wire when a temperature of the susceptor wire is below a Curie point of the material of the susceptor wire. The susceptor wire limits heating to a temperature that is equal to or less than a Curie temperature associated with the material of the susceptor wire.
Abstract:
A fiber placement system including a fiber placement station at a first location, the fiber placement station including a tool and a fiber placement assembly configured to construct a reinforcement layup on the tool, the first fiber placement assembly including a compaction roller rotatable about an axis of rotation, the compaction roller at least partially defining a nip, a thermoplastic composite ply extending through the nip and a heating unit positioned to heat the thermoplastic composite ply proximate the nip, and a consolidation station at a consolidation location, the consolidation location being different from the first location, the consolidation station including a consolidation tool and a consolidation system configured to consolidate a reinforcement layup assembly that includes the reinforcement layup.
Abstract:
Described herein is a method of forming a heat-treated material includes positioning the heat-treated material between first and second susceptors. Each of the first and second susceptors includes a tool face shaped according to a desired shape of the heat-treated material. The method also includes applying a low-strength magnetic field to the first and second susceptors to heat the first and second susceptors. Further, the method includes compressing the heat-treated material between the first and second susceptors to form the heat-treated material into the desired shape. The method additionally includes applying a high-strength magnetic field to the heat-treated material before compressing the heat-treated material between the first and second susceptors.
Abstract:
A system and method for operating an ice detection and deicing system are provided herein. The ice detection and deicing system may use changing magnetic properties of various components caused by temperature changes to detect conditions conducive to, or indicating, ice formation. The ice detection and deicing system may further use eddy currents induced in one or more layers of the system to increase the temperature of the one or more layers to reduce the amount of ice formation or reduce the probability of ice being formed.
Abstract:
A method and apparatus are present for manufacturing a part. The part is comprised of a metal alloy and is positioned to form a positioned part. An electromagnetic field is generated that heats the positioned part. A surface of the positioned part is exposed to an inert gas, while the electromagnetic field is generated to create an inverse thermal gradient between an exterior of the positioned part and an interior section of the positioned part to form a heat treated part.
Abstract:
A method of manufacturing a radius filler may include providing a plurality of fibers, braiding the plurality of fibers into a braided preform, shaping the braided preform into a braided radius filler, and cutting the braided radius filler to a desired length.
Abstract:
A composite structure may include a laminate and a stabilizing element. The laminate may have a plurality of composite plies. The composite structure may include a geometric discontinuity that may be associated with the laminate. The stabilizing element may be included with the composite plies and may be located proximate the geometric discontinuity.
Abstract:
Methods of forming a composite structure from a preform with a vent are presented. A preform comprises a plurality of sets of full length plies, a plurality of sets of partial plies alternating with the plurality of sets of full length plies, and a vent extending through the plurality of sets of partial plies.
Abstract:
A method and apparatus for forming a composite structure. An inner tooling, a stackup, and an outer tooling are held in place together using a load constraint. A bladder and a plurality of stringer bladders in the stackup are pressurized to cause expansion of the bladder and the plurality of stringer bladders, thereby pushing together an overbraided thermoplastic skin and a plurality of overbraided thermoplastic members in the stackup. The overbraided thermoplastic skin and the plurality of overbraided thermoplastic members are co-consolidated while the bladder and the plurality of stringer bladders are pressurized to form the composite structure.
Abstract:
Methods and a double vacuum processing system are presented. A double vacuum processing system comprises a first vacuum zone; a second vacuum zone encompassing the first vacuum zone; a first vacuum pump connected to the first vacuum zone and configured to draw a vacuum within the first vacuum zone; a second vacuum pump connected to the second vacuum zone and configured to draw a vacuum within the second vacuum zone; and a diverter valve. The diverter valve is configured to alternate between pneumatically connecting the first vacuum zone to the second vacuum pump or connecting the first vacuum zone to the first vacuum pump.