摘要:
A resin tube 9 inserted and fixed to one end of a female connector 10 and a corresponding pipe 11 connected by snap in to the other end of a female connector 10 are fixed by a first holding means 17 and a second holding means 18 of a holder member 16 respectively. Holding portion of either the resin tube 9 and the corresponding pipe 11 is located off the common axis L as securely held by the holder member 16. Either the resin tube 9 or the corresponding pipe 11 is turned about the female connector 10 so as to connect with either the first holding means 17 or the second holding means 18.
摘要:
A semiconductor device is disclosed, which comprises a first main electrode, a second main electrode, a high-resistance semiconductor layer of first conductivity type interposed between the first main electrode and the second main electrode, and at least a buried layer of second conductivity type selectively formed in the semiconductor layer, extending at substantially right angles to a line connecting the first and second main electrodes, comprising a plurality strips functioning as current paths and set at a potential different from a potential of any other electrode when a depletion layer extending from a region near the first main electrode reaches the buried layer.
摘要:
An insulated-gate semiconductor device comprises a P type emitter layer, an N.sup.- high-resistive base layer formed on the P type emitter layer, and a P type base layer contacting the N.sup.- high-resistive base layer. A plurality of trenches are formed having a depth to reach into the N.sup.- high-resistive base layer from the P type base layer. A gate electrode covered with a gate insulation film is buried in each trench. An N type source layer to be connected to a cathode electrode is formed in the surface of the P type base layer in a channel region between some trenches, thereby forming an N channel MOS transistor for turn-on operation. A P channel MOS transistor connected to the P base layer is formed in a channel region between other trenches so as to discharge the holes outside the device upon turn-off operation.
摘要:
An insulated-gate semiconductor device comprises a p type emitter layer, an N.sup.- high-resistive base layer formed on the P type emitter layer, and a P type base layer contacting the N.sup.- high-resistive base layer. A plurality of trenches are formed having a depth to reach into the N.sup.- high-resistive base layer from the P type base layer. A gate electrode covered with a gate insulation film is buried in each trench. An N type source layer to be connected to a cathode electrode is formed in the surface of the P type base layer in a channel region between some trenches, thereby forming an N channel MOS transistor for turn-on operation. A P channel MOS transistor connected to the P base layer is formed in a channel region between other trenches so as to discharge the holes outside the device upon turn-off operation.
摘要:
An insulated-gate semiconductor device comprises a P type emitter layer, an N.sup.- high-resistive base layer formed on the P type emitter layer, and a P type base layer contacting the N.sup.- high-resistive base layer. A plurality of trenches are formed having a depth to reach into the N.sup.- high-resistive base layer from the P type base layer. A gate electrode covered with a gate insulation film is buried in each trench. An N type source layer to be connected to a cathode electrode is formed in the surface of the P type base layer in a channel region between some trenches, thereby-forming an N channel MOS transistor for turn-on operation. A P channel MOS transistor connected to the P base layer is formed in a channel region between other trenches so as to discharge the holes outside the device upon turn-off operation.
摘要:
In a hose having a resin layer as an inner layer, a plasma treatment is performed on the inner surface of the inner layer and a connecting portion of an end part of the hose to thereby perform surface modification. Then, a sealing layer made of an elastic material is coated on and bonded to the inner surface of the connecting portion.
摘要:
A semiconductor device disclosed herein comprises: a first base region which is of a first conductivity type; a second base region which is of a second conductivity type and which is selectively formed on a major surface of the first base region; a stopper region which is of a first conductivity type and which is formed on the major surface of the first base region, the stopper region being a predetermined distance away from the second base region and surrounding the second base region; and a ring region which is of a second conductivity type which is formed on the major surface of the first base region between the second base region and the stopper region, the ring region being spirally around the second base region and electrically connected to the second base region and the stopper region.
摘要:
Connection verifying device for a pipe and a connector has a body portion, a stop and verification arm and an abutment finger. The body portion includes an abutment plate and a fit-on portion. The stop and verification arm extends from an outer periphery of the abutment plate in one axial direction, while the abutment finger protrudes from one axial end of the fit-on portion in one axial direction. The abutment finger is arranged so as to abut and urge an annular projection of a pipe into an engagement slit of a retainer when the pipe and the connector are in half-fitting relation.
摘要:
A solid-state imaging device is provided and includes: a semiconductor substrate; a plurality of photoelectric conversion films stacked above the semiconductor layer and absorbing different wavelength regions of light; and a transmission-blocking film at least one between the plurality of photoelectric conversion films, the transmission-blocking film blocking a transmission of a particular region of light, the particular region of light having a wavelength in a region to be absorbed in a photoelectric conversion film located above and nearest to the transmission-blocking film.
摘要:
EMI filter 20 includes input terminal Vin, output terminal Vout, resistor component R1 and diodes D1 and D2. Resistor component R1 is composed of polycrystalline resistor component Rp and ring resistor components R11 and R12. Polycrystalline resistor component Rp is connected between input and output terminals Vin and Vout. Ring resistor components R11 and R12 are provided on one and the other sides of polycrystalline resistor component at a prescribed distance, respectively. Further, diode D1 has cathode and anode electrodes connected to input terminal Vin and reference potential Vss, respectively. Likewise, diode D2 has cathode and anode electrodes connected to output terminal Vout and reference potential Vss, respectively. Ring resistor components R11 and R12 are rectangular in shape to electromagnetically couple to polycrystalline resistor component Rp. When a high frequency signal is applied to input terminal Vin, an electric current flowing through polycrystalline resistor component Rp generates magnetic fields so that ring resistor components R11 and R12 electro-magnetically induce an electric current.