摘要:
A piezoelectric resonator of the present invention is structured such that on a substrate 5 having a cavity 4 formed therein, a lower electrode 3, a piezoelectric body 1, a spurious component control layer 16, and an upper electrode 2 are formed in this order from bottom up. The spurious component control layer 16 is a layer for controlling a spurious frequency, and composed of, for example, a metallic material, a dielectric material, or a piezo electric material. By additionally providing the spurious component control layer 16, it is made possible to cause variation of the spurious frequency due to unwanted variation to become greater than variation in resonance frequency of the main resonance of the piezoelectric resonator. Thus, it is possible to realize a piezoelectric resonator having an admittance frequency response where no spurious component occurs between resonance frequency fr and antiresonance frequency fa.
摘要:
The filter circuit is a filter circuit having plural passbands including a first filter having a first passband, and a second filter having a second passband, with their inputs and outputs connected mutually so that these filters are connected in parallel. Inductor elements are connected in series to the terminal of the first filter to which the second filter is connected, and capacitor elements are connected in series to the terminal of the second filter to which the first filter is connected.
摘要:
To realizing a filter which is capable of properly controlling the passband, and the attenuation pole of a surface acoustic wave filter, a surface acoustic wave filter connected in a ladder type with the surface acoustic wave resonators 104, 105 has an element 106 which changes in capacity by voltage to be impressed and is connected in series with a resonator 105 connected in parallel to the signal line 100.
摘要:
A surface acoustic wave device including a dielectric substrate having an input electrode and an output electrode and a grounding electrode on a first surface of the dielectric substrate, and an outer electrode on a second surface of the dielectric substrate; and a surface acoustic wave element having an electrode pad and a comb-shaped electrode disposed on a first surface of the surface acoustic wave element. The surface acoustic wave element is bonded to the dielectric substrate via a metal bump and a conductive resin formed on the electrode pad. The surface acoustic wave device further includes an insulating resin deposited on the periphery of the metal bump, and a guard layer shorter in height than the surface acoustic wave element formed adjacent the surface acoustic wave element on the first surface of the dielectric substrate.
摘要:
A SAW filter is configured so that a resonator-type filter portion, in which a plurality of SAW resonators are connected in series and in parallel, and a 3-electrode type serially coupled filter portion, in which three IDTs for inputting and outputting signals are interposed between reflectors, are serially connected on one and the same substrate. The design parameters of the respective SAW resonators are adjusted so that the impedances of respective sides of the filter portions, when viewed from the node of the resonator-type SAW filter portion and the 3-electrode type serially coupled SAW filter portion, substantially have a complex conjugate relationship with each other in the pass frequency band.
摘要:
A surface acoustic wave device includes: a holding substrate; a piezoelectric substrate; an interdigital transducer formed on the holding substrate; and supports for holding said piezoelectric substrate on the holding substrate so that the interdigital transducer is evenly in contact with the piezoelectric substrate.
摘要:
A surface acoustic wave device includes: a single crystal piezoelectric substrate; a single crystal piezoelectric thin plate formed on the single crystal piezoelectric substrate, the single crystal piezoelectric thin plate being bonded to the single crystal piezoelectric substrate by direct bonding; and interdigital transducers formed on the single crystal piezoelectric thin plate, for exciting a surface acoustic wave in at least the single crystal piezoelectric thin plate.
摘要:
Electricity generated by a vibration power generator 200 can be extracted efficiently by providing the vibration power generator 200, a rectifier circuit bridge 205, an output controlling circuit 201, a load detecting circuit 202 and a frequency detecting circuit 204 and detecting a frequency of the vibration power generator 200 and then controlling an impedance of an output controlling circuit 101 depending on the frequency.
摘要:
In a MEMS device having a substrate 1, a sealing membrane 7, and a movable portion 3 of beam and an electrode 5 which have a region wherein they overlap with a gap in perpendicular to a substrate 1 surface, a first cavity 9 is on the side of the movable portion 3 in the direction perpendicular to the surface of the substrate, and a second cavity is the other cavity, and an inner surface a of a side wall A in contact with the electrode 5, of the first cavity 9, is positioned more inside than an inner surface b of a side wall B in contact with the electrode 5, of the second cavity 10, in the direction parallel to the substrate surface, such that the movable portion 3 does not collide with the electrode 5 when mechanical stress is applied from outside to the sealing membrane 7.
摘要:
A vibration power generator including a first substrate; first electrodes disposed over one surface of the first substrate; a second substrate spaced from the first substrate and opposed to the one surface of the first substrate; and second electrodes disposed over one surface of the second substrate so as to be opposed to the first electrodes, wherein one of the first and second electrodes includes a film holding a charge; one of the first and second substrates is a vibratory substrate; and an overlapped area between the first and second electrodes becomes minimum and then maximum, or becomes maximum and minimum, and an electrostatic capacity Cp formed between the first and second electrodes when the overlapped area becomes maximum changes, and the change of Cp comprises an increase of Cp, while the vibratory substrate is displaced from the vibration center to the vibration end.