摘要:
A memory device that selectably exhibits first and second logic levels. A first conductive material has a first surface with a first memory layer formed thereon, and a second conductive material has a second surface with a second memory layer formed thereon. A connective conductive layer joins the first and second memory layers and places the same in electrical contact. The structure is designed so that the first memory layer has a cross-sectional area less than that of the second memory layer.
摘要:
Programmable resistive RAM cells have a resistance that depends on the size of the programmable resistive elements. Manufacturing methods and integrated circuits for programmable resistive elements with uniform resistance are disclosed that have a cross-section of reduced size compared to the cross-section of the interlayer contacts.
摘要:
A method is described for operating a bistable resistance random access memory having two memory layer stacks that are aligned in series is disclosed. The bistable resistance random access memory comprises two memory layer stacks per memory cell, the bistable resistance random access memory operates in four logic states, a logic “00” state, a logic “01” state, a logic “10” state and a logic “11” state. The relationship between the four different logic states can be represented mathematically by the two variables n and f and a resistance R. The logic “0” state is represented by a mathematical expression (1+f) R. The logic “1” state is represented by a mathematical expression (n+f) R. The logic “2” state is represented by a mathematical expression (1+nf) R. The logic “3” state is represented by a mathematical expression n(1+f) R.
摘要:
A non-volatile method with a self-aligned RRAM element. The method includes a lower electrode element, generally planar in form, having an inner contact surface. At the top of the device is a upper electrode element, spaced from the lower electrode element. A containment structure extends between the upper electrode element and the lower electrode element, and this element includes a sidewall spacer element having an inner surface defining a generally funnel-shaped central cavity, terminating at a terminal edge to define a central aperture; and a spandrel element positioned between the sidewall spacer element and the lower electrode, having an inner surface defining a thermal isolation cell, the spandrel inner walls being spaced radially outward from the sidewall spacer terminal edge, such that the sidewall spacer terminal edge projects radially inward from the spandrel element inner surface. ARRAM element extends between the lower electrode element and the upper electrode, occupying at least a portion of the sidewall spacer element central cavity and projecting from the sidewall spacer terminal edge toward and making contact with the lower electrode. In this manner, the spandrel element inner surface is spaced from the RRAM element to define a thermal isolation cell adjacent the RRAM element.
摘要:
A process in the manufacturing of a resistor random access memory with a confined melting area for switching a phase change in the programmable resistive memory. The process initially formed a pillar comprising a substrate body, a first conductive material overlying the substrate body, a programmable resistive memory material overlying the first conductive material, a high selective material overlying the programmable resistive memory material, and a silicon nitride material overlying the high selective material. The high selective material in the pillar is isotropically etched on both sides of the high selective material to create a void on each side of the high selective material with a reduced length. A programmable resistive memory material is deposited in a confined area previously occupied by the reduced length of the poly, and the programmable resistive memory material is deposited into an area previously occupied by the silicon nitride material.
摘要:
A process in the manufacturing of a resistor random access memory with a confined melting area for switching a phase change in the programmable resistive memory. The process initially formed a pillar comprising a substrate body, a first conductive material overlying the substrate body, a programmable resistive memory material overlying the first conductive material, a high selective material overlying the programmable resistive memory material, and a silicon nitride material overlying the high selective material. The high selective material in the pillar is isotropically etched on both sides of the high selective material to create a void on each side of the high selective material with a reduced length. A programmable resistive memory material is deposited in a confined area previously occupied by the reduced length of the poly, and the programmable resistive memory material is deposited into an area previously occupied by the silicon nitride material.
摘要:
Programmable resistive RAM cells have a resistance that depends on the size of the programmable resistive elements. Manufacturing methods and integrated circuits for programmable resistive elements with uniform resistance are disclosed that have a cross-section of reduced size compared to the cross-section of the interlayer contacts.
摘要:
A method for manufacturing a phase change memory device comprises forming an electrode layer. Electrodes are made in the electrode layer using conductor fill techniques that are also used inter-layer conductors for metallization layers, in order to improve process scaling with shrinking critical dimensions for metallization layers. The electrode layer is made by forming a multi-layer dielectric layer on a substrate, etching the multi-layer dielectric layer to form vias for electrode members contacting circuitry below, forming insulating spacers on the vias, etching through a top layer in the multi-layer dielectric layer to form trenches between the insulating spacers for electrode members contacting circuitry above, filling the vias and trenches with a conductive material using the metallization process. Thin film bridges of memory material are formed over the electrode layer.
摘要:
A bistable resistance random access memory is described for enhancing the data retention in a resistance random access memory member. A dielectric member, e.g. the bottom dielectric member, underlies the resistance random access memory member which improves the SET/RESET window in the retention of information. The deposition of the bottom dielectric member is carried out by a plasma-enhanced chemical vapor deposition or by high-density-plasma chemical vapor deposition. One suitable material for constructing the bottom dielectric member is a silicon oxide. The bistable resistance random access memory includes a bottom dielectric member disposed between a resistance random access member and a bottom electrode or bottom contact plug. Additional layers including a bit line, a top contact plug, and a top electrode disposed over the top surface of the resistance random access memory member. Sides of the top electrode and the resistance random access memory member are substantially aligned with each other.
摘要:
A memory device comprises first and second electrodes with a memory element and a buffer layer located between and electrically coupled to them. The memory element comprises one or more metal oxygen compounds. The buffer layer comprises at least one of an oxide and a nitride. Another memory device comprises first and second electrodes with a memory element and a buffer layer, having a thickness of less than 50 Å, located between and electrically coupled to them. The memory comprises one or more metal oxygen compounds. An example of a method of fabricating a memory device includes forming first and second electrodes. A memory, located between and electrically coupled to the first and the second electrodes, is formed; the memory comprises one or more metal oxygen compounds and the buffer layer comprises at least one of an oxide and a nitride.