Abstract:
In a system for controlling an engine having an input u, there are provided with applying means (vibration signal) for applying a component p that changes at a predetermined cycle to the plant, a Washout Filter for calculating a parameter h based on an output y of the plant, a finite interval integrator for integrating a value j obtained by multiplying the calculated parameter h by the applied component p in an interval of integral multiple of a cycle of the component p, and an infinite interval integrator, etc. for calculating the input u based on the integrated value g obtained by the integration. Owing to this configuration, it becomes possible to provide a system that can optimize the output y, while preventing the resonance of the control system.
Abstract:
A transmission control system for maintaining good positioning performance even if a dynamic characteristic of a transmission is out of a predicted range. A sliding mode controller provided in a shift controller has two degrees of freedom and can independently specify a follow-up characteristic of an actual shift arm position to follow a target position in a shifting direction and a disturbance suppressing characteristic respectively. The sliding mode controller determines a control input to be supplied to a shift motor of a shifting device. A sliding mode controller provided in a selection controller has two degrees of freedom and can independently specify a follow-up characteristic of an actual shift arm position to follow a target position in a selecting direction and a disturbance suppressing characteristic, respectively. This sliding mode controller determines a control input to be supplied to a selection motor of a selecting device.
Abstract:
A method and an apparatus for predicting intake manifold pressure are presented, to compensate for a large lag or a large time delay without producing an overshot or discontinuous behaviors of a predicted value. The method comprises the step of obtaining a difference of values of a variable to be predicted and a difference of values of another variable ahead of the variable to be predicted. The method further comprises the step of filtering the differences with adaptive filters. The method further comprises the step of obtaining a predicted difference of values of the variable to be predicted, through algorithm of estimation with fuzzy reasoning. The method further comprises the step of adding the predicted difference of values of the variable to be predicted, to a current value of the variable to be predicted, to obtain a predicted value of the variable to be predicted.
Abstract:
A valve timing control system for an internal combustion engine, which is capable of accurately and delicately controlling an amount of intake air, and thereby maintaining excellent combustion state and reduced exhaust emissions. The valve timing control system variably controls the valve-closing timing of an intake valve with respect to valve-opening timing of the same as desired via a variable intake valve actuation assembly. The ECU of the engine determined a basic value of a target auxiliary intake cam phase according to the demanded drive torque of the engine. The ECU calculates a control input to the variable intake valve actuation assembly such that the cylinder intake air amount converges to a target intake air amount and at the same time the auxiliary intake cam phase is constrained to the basic value of the target auxiliary intake cam phase.
Abstract:
A control system which is capable of avoiding an overloaded state of an actuator without using sensors or the like. An ECU 2 of the control system 1 calculates a lift control input U_Liftin to a variable valve lift mechanism 50 with an algorithm expressed by equations (2) to (5), such that the valve lift Liftin follows up a target valve lift Liftin_cmd, calculates a cumulative value Simot by cumulative calculation of the product of the value Imot of electric current flowing through the variable valve lift mechanism 50 and a sampling time period Stime, and when SImot≧Simot_J1 holds, sets two parameters pole_f_lf and ploe_lf to respective predetermined failure-time parameters pole_f_lf_J1 and ploe_lf_J1 which cause the lift control input U_Liftin to become smaller than when Simot
Abstract:
A control apparatus which is capable of ensuring both high-level stability and accuracy of control, even when controlling a controlled object having extremal characteristics or a controlled object a controlled object model of which cannot be represented. The control apparatus 1 includes a cooperative controller 30, an onboard model analyzer 40, and a model corrector 60. The model corrector 60 calculates the model correction parameter matrix θ, so as to correct the controlled object model defining the relationship between the intake opening angle θlin and the exhaust reopening angle θrbl and the indicated mean effective pressure Pmi. The onboard model analyzer 40 calculates first and second response indices RI1 and RI2 representative of correlations between θlin, θrbl, and Pmi, based on the controlled object model corrected using θ. The cooperative controller 30 calculates the θlin and θrbl such that Pmi is caused to converge to a target value Pmi_cmd, and determines an increasing/decreasing rate and increasing/decreasing direction of θlin and θrbl according to RI1 and RI2.
Abstract:
An intake air amount control system for an internal combustion engine, which controls respective amounts of intake air drawn into four cylinders #1 to #4, independently of each other, by variable inter-intake cam phase mechanisms 80, identifies intake air amount variation coefficients Φ#i, based on a model [equation (43)] defining a relationship between an estimated value Gth_est of a TH passing intake air amount and a plurality of simulation values Gcyl_OS#i, such that the estimated value Gth_est becomes equal to the TH passing intake air amount, calculates a target inter-intake cam phase θssi#i_cmd, on a cylinder-by-cylinder basis, according to the identified intake air amount variation coefficients Φ#i (step 81), and calculates control input DUTY_ssi#2 to #4 to the variable inter-intake cam phase mechanisms 80 according to the target inter-intake cam phases θssi#i_cmd (step 75).
Abstract translation:用于内燃机的进气量控制系统通过可变进气内凸轮相位机构80独立地控制吸入四个气缸#1至#4的进气的量,识别进气量变化系数 Phi#i基于限定通过进气量TH的估计值Gth_est与多个模拟值Gcyl_OS#i之间的关系的模型[等式(43)],使得估计值Gth_est变为等于TH 通过进气量,根据识别的进气量变化系数Phi#i,在逐个气缸的基础上计算目标进气内凸轮相位t i i scmd(步骤81),并计算控制输入DUTY_ssi#2 到#4到根据目标进气间凸轮相位的可变进气腔内凸轮相位机构80(步骤75)。
Abstract:
A failure detection apparatus for preventing erroneous detection due to a degradation of a sensor and thereby accurately performing failure detection of a variable valve timing and lift control system is provided. The detection apparatus detects a failure of a variable valve timing and lift control system in an engine. The detection apparatus detects a vibration inside an engine cylinder, extracts the component of seating sound of the valve from the output signal of the sensor, determines an actual seating time of said valve from the component of seating sound, and calculates a target seating time of said valve based on at least one of a requested lift amount, a requested advance angle, and a requested open angle depending on the operating conditions. The detecting apparatus corrects the actual seating time for a stationary deviation between the actual seating time and the target seating time caused by degradation or unevenness of the sensor. The detecting apparatus determines a failure of the variable valve timing and lift control system by comparing the corrected actual seating time with the target seating time.
Abstract:
An ignition timing control system for internal combustion engines, which is capable of preventing occurrence of variation in engine speed and vibrations which can be caused due to variation in combustion state between the cylinders, to thereby improve drivability. The ECU 2 of the ignition timing control system 1 calculates a statistically processed value Pmi_ls#i according to the in-cylinder pressure Pcyl#i, and calculates an averaging target value Piav_cmd by weighted averaging of a minimum value Pmi_ls_min1 and a second minimum value Pmi_ls_min2 within a predetermined range of the statistically processed value. The ECU 2 calculates a correction value DIGCMP#i by performing a limiting process for setting the optimization correction value DIGOP#i for control of the ignition timing to a limit value on the advanced side, on the averaging correction value DIGPIAV#i for causing the statistically processed values Pmi_ls#i to follow the averaging target value Piav_cmd, such that the statistically processed values Pmi_ls#i becomes maximum. The ignition timing IGLOG#i is calculated for each cylinder based on the correction value DIGCMP#i.
Abstract:
A control apparatus which is capable of ensuring both high-level stability and accuracy of control and reducing manufacturing costs thereof and computation load thereon, even when controlling a controlled object having extremal characteristics or a controlled object of a multi-input multi-output system. The control apparatus is comprised of an onboard model analyzer and a cooperative controller. The onboard model analyzer, based on a controlled object model defining the relationships between an intake opening angle and an exhaust reopening angle, and an indicated mean effective pressure, calculates first and second response indices and indicative of a correlation therebetween, respectively. The cooperative controller calculates the intake opening angle and the exhaust reopening angle with predetermined algorithms such that the indicated mean effective pressure is caused to converge to its target value, and determines the increasing/decreasing rate and the increasing/decreasing direction of the aforementioned angles according to the first and second response indices.