Abstract:
An apparatus and method for producing a coated analytic substrate using a compact and portable automated instrument located in the laboratory setting at the point of use which can consistently produce one or a plurality of coated analytic substrates “on demand” for using the analytic substrate immediately after coating, preferably without a step of rinsing the coated analytic substrate before use. The apparatus preferably uses applicator cartridges having a reservoir containing the coating compositions used to form the coatings. Preferably the cartridges are removable and interchangeable to facilitate the production of individual analytic substrates having different coatings or different coating patterns. These coated analytic substrates have superior specimen adhesion characteristics due to the improved quality of the coatings applied by the coating apparatus and due to the quickness with which the coated analytic substrates can be used in the lab after production.
Abstract:
An apparatus and method for producing a coated analytic substrate using a compact and portable automated instrument located in the laboratory setting at the point of use which can consistently produce one or a plurality of coated analytic substrates “on demand” for using the analytic substrate immediately after coating, preferably without a step of rinsing the coated analytic substrate before use. The apparatus preferably uses applicator cartridges having a reservoir containing the coating compositions used to form the coatings. Preferably the cartridges are removable and interchangeable to facilitate the production of individual analytic substrates having different coatings or different coating patterns. These coated analytic substrates have superior specimen adhesion characteristics due to the improved quality of the coatings applied by the coating apparatus and due to the quickness with which the coated analytic substrates can be used in the lab after production.
Abstract:
Applicator (1) for sealants, comprising—a feed tube (7) with a supply side (5), a tubular feed part and an outflow side, wherein the outflow side comprises a nozzle (22); —a wiping blade (9) fixedly connected to the outflow side of the feed tube, wherein the periphery of the nozzle is located in the upper surface of the wiping blade and wherein the upper surface of the wiping blade has a profile formed from: an inner surface (24) bounded by two upright dikes (20), wherein the nozzle is located between the two dikes and in the inner surface, wherein the dikes and the inner surface extend to an edge (28, 30) of the wiping blade where the profile of the inner surface (24) and the dikes (20) together form a wiping edge (28) for applying and wiping sealant on an object.
Abstract:
A doctor blade assembly for use in combination with apparatus for forming a film on a substrate. The doctor blade assembly includes a doctor blade to be mounted on a programmable robot. The doctor blade has a bottom face and spacers at opposite ends of the body of the doctor blade extending a predetermined distance down below the bottom face of the body for contacting a substrate and spacing the bottom face from the substrate. The spacers are adjustable relative to the doctor blade for adjusting the predetermined distance according to the thickness of film to be formed on the substrate. Other aspects and methods are also disclosed.
Abstract:
An apparatus and method for producing a coated analytic substrate using a compact and portable automated instrument located in the laboratory setting at the point of use which can consistently produce one or a plurality of coated analytic substrates “on demand” for using the analytic substrate immediately after coating, preferably without a step of rinsing the coated analytic substrate before use. The apparatus preferably uses applicator cartridges having a reservoir containing the coating compositions used to form the coatings. Preferably the cartridges are removable and interchangeable to facilitate the production of individual analytic substrates having different coatings or different coating patterns. These coated analytic substrates have superior specimen adhesion characteristics due to the improved quality of the coatings applied by the coating apparatus and due to the quickness with which the coated analytic substrates can be used in the lab after production.
Abstract:
An apparatus and method for producing a coated analytic substrate using a compact and portable automated instrument located in the laboratory setting at the point of use which can consistently produce one or a plurality of coated analytic substrates “on demand” for using the analytic substrate immediately after coating, preferably without a step of rinsing the coated analytic substrate before use. The apparatus preferably uses applicator cartridges having a reservoir containing the coating compositions used to form the coatings. Preferably the cartridges are removable and interchangeable to facilitate the production of individual analytic substrates having different coatings or different coating patterns. These coated analytic substrates have superior specimen adhesion characteristics due to the improved quality of the coatings applied by the coating apparatus and due to the quickness with which the coated analytic substrates can be used in the lab after production.
Abstract:
Provided are a film-forming composition for imprinting that enables a structure to be obtained after coating the composition on a substrate and pressing a mold thereto with low compression pressure, a method of manufacturing a structure using the film-forming composition for imprinting, and a structure obtained thereby. The film-forming composition for imprinting according to the present invention contains a resin and an organic solvent, in which the organic solvent includes a particular solvent having a boiling point of 100 to 200° C. at ambient pressure. When the structure is manufactured, the film-forming composition for imprinting according to the present invention is coated on a substrate to form a resin layer, and after a mold is pressed against the resin layer, the mold is released from the resin layer.
Abstract:
A liquid coating applicator with a very precise means for controlling gap thickness as well as adapting to non-planar discontinuities in the substrate.
Abstract:
A spreading apparatus is provided for spreading flowable materials such as adhesives and/or sealants on a surface such as a floor and/or a wall. The apparatus has a pad retainer for retaining a removable spreader pad and a reservoir chamber for flowable material pivotally attached to the pad retainer to permit pivoting of the reservoir chamber frontwards and backwards. The spreader pad comprises an elongated resilient foam member sufficiently thick to fit within and frictionally engage the pad retainer, and sufficiently high to extend below the pad retainer so that the spreader pad rather than the pad retainer contacts the surface when the spreader pad is retained by the pad retainer.
Abstract:
A coater for dispersed slurry capable of coating coated dispersed slurry on a nonwoven cloth-like base material while bringing the slurry into contact with the material, comprising a net conveyor for transferring the nonwoven cloth-like base material, a supply means for supplying the dispersed slurry onto the net conveyor, and a coating roll for forming a coating layer of a specified thickness by pressing, from the upper side thereof, the dispersed slurry supplied onto the nonwoven cloth-like base material, wherein this coating roll is allowed to come into direct contact with the dispersed slurry on the peripheral surface of the nonwoven cloth-like base material or allowed to come into contact with the dispersed slurry through a film provided therethrough.