Abstract:
A signal (Snormai) is provided to a heat element of a temperature sensor, which is recorded as a step response (Lruh, Lbew). From the difference of the step response compared with the reaction adaptively determined with the temperature sensor at zero air circulation, air flow or no air flow is determined.
Abstract:
A method and system for detecting a low-charge condition in a dual-output vehicle air conditioning system. A program reads a set of evaporator, driver-side, and passenger-side temperatures for the purpose of adjusting a temperature in a vehicle passenger compartment. A diagnostic program then analyzes these same readings to determine whether a temperature differential condition exists. Assuming a temperature differential condition exists, the program records a set of the temperature sensor readings and a time period for these temperature readings. The diagnostic program compares this set of information with a set of stored data to determine whether a low-charge condition exists.null
Abstract:
An infrared sensor for determining the temperature of a car interior includes a thermistor and a thermopile in a can and a protective window which exposes the thermopile to the thermal energy of the car interior. The combined outputs of these thermally sensitive elements represents the interior radiant temperature. The effectiveness of the thermopile changes if the window gets dirty to change its output. A resistive heater on the can is used to heat the sensor during calibration. A microprocessor receiving the outputs of the sensor has an algorithm for adjusting a gain which compensates for sensor changes. When the interior temperature is stable, the sensor is heated and thermistor values before and after heating the sensor are used as a basis for adjustment of the gain.
Abstract:
In a thermal-environment sensor which detects thermal conditions in an indoor environment based on the surface temperature of a heating element supplied with a thermal quantity, the spectral emissivity of the outer surface of said heating element closely conforming to the spectral emissivity of the surface of the human skin or clothes thereon so as to bring the radiant heat transfer coefficient of the sensor remarkably near that of the human body.
Abstract:
In a thermal-environment sensor which detects thermal conditions in an indoor environment based on the surface temperature of a heating element supplied with a thermal quantity, the spectral emissivity of the outer surface of said heating element closely conforming to the spectral emissivity of the surface of the human skin or clothes thereon so as to bring the radiant heat transfer coefficient of the sensor remarkably near that of the human body.