Abstract:
An electron beam physical vapor deposition (EBPVD) process performed with a coating apparatus to produce a coating material (e.g., a ceramic thermal barrier coating) on an article. The EBPVD apparatus generally includes a coating chamber operated at an elevated temperature and a subatmospheric pressure. The coating chamber contains a crucible and a coating material surrounded by and contained within the crucible, and the coating material has a surface exposed by the crucible. The process entails projecting an electron beam onto the surface of the coating material, wherein the electron beam defines a beam pattern having a higher intensity at an interface of the surface of the coating material with the crucible than at a central region of the surface of the coating material.
Abstract:
An electron-beam deposition system includes an evaporation source having a source target with a target location at which a deposition material may be positioned, and a controllable electron-beam source disposed to direct an electron beam at the target location. A trailing-indicator monitor measures a past evaporation performance of the evaporation source and has a trailing-indicator output, and a leading-indicator monitor measures a future evaporation performance of the evaporation source and has a leading-indicator output. A controller receives the trailing-indicator output and the leading-indicator output, and controls the electron-beam source responsive to the trailing-indicator output and to the leading-indicator output. Preferably, the trailing-indicator monitor measures a deposition of the deposition material on a monitored substrate, and the leading-indicator monitor measures a brightness of the deposition material in the evaporation source.
Abstract:
An electron beam generator having circuit interconnections between individual components that are less prone to the adverse effects of thermal cycling. The generator includes a conductor rod within a guide tube, a center conductor secured to one end of the rod, and an outer conductor secured to the adjacent end of the guide tube. An opposite end of the center conductor has an integrally-formed flange extending radially therefrom. A first tower is secured and electrically connected to the flange, while a second and adjacent tower is electrically connected to the outer conductor. A filament is mounted to and between the first and second towers. A forward leg of the filament circuit comprises the conductor rod, the center conductor, the flange and the first tower, and the return leg of the filament circuit comprises the second tower and the guide tube interconnected by the outer conductor.
Abstract:
A method is disclosed for the operation of a high-power electron beam for the vaporization of materials in a target. With this method, static and dynamic deflection errors are corrected. First, the static and dynamic deflection errors are ascertained by means of a teach-in process for concrete spatial coordinates and concrete frequencies of the deflection currents and stored in a memory. For the later operation, this stored data is used in such a way that input geometric data for the incidence points of the electron beam is automatically recalculated into corrected current values which bring about the exact incidence onto the input points. A corresponding procedure takes place with the input of frequencies for the deflection current. The input frequencies are automatically corrected in terms of frequency and amplitude in order to eliminate the frequency-dependent attenuation effects. Both in the correction of the static and in the correction of the dynamic deflection errors it is guaranteed by suitable interpolation methods that even the spatial coordinates and frequencies not considered in the teach-in process are taken into account. Finally, a method is specified with which it is possible by mere specification of a power distribution on a crucible surface to control the electron beam such that the specified data is satisfied.
Abstract:
The present invention provides multilayer ion plated coatings comprising a titanium oxide as well as methods for applying such coatings onto a variety of substrates. In particular, the invention provides ion plated transparent multilayer coatings comprising layers of titanium oxide (particularly TiO.sub.x, x.apprxeq.2) and materials of low refractive indices such as SiO.sub.2, Al.sub.2 O.sub.3, MgO etc. Further provided are articles of manufacture comprising such multilayer coatings and novel deposition methods.
Abstract:
A method for the electron beam deposition of a multicomponent evaporant to ensure a consistent layer quality with constant composition and thickness in a defined manner. The X-radiation emitted from the evaporant on the point of electron beam impingement is measured in situ, using the obtained signal as reference input to control the parameters of the evaporation process and therefore to control the deposition rate and material composition of the deposited layer. The method is used for the production of corrosion resistant, high-temperature resistant, hard-wearing or optical layers on, for example, strip steel or plastic film.
Abstract:
An electron beam gun with liquid cooled rotatable crucible is disclosed including a metallic bellows connected to the housing for the rotatable crucible at a 90.degree. angle and the bellows contractible to a minimum length that is a straight line between the axis of the housing and the remote end of the bellows with the bellows permitting rotation about the housing axis as the crucible is rotated to place different pockets in target position of the E-gun.
Abstract:
The invention described here is concerning a power supply device of a thermionic emitting cathode, an electron source in an electron vapor deposition plant. This device is provided with a transmitter whose secondary feeds the thermionic emitting cathode and whose primary is supplied with pulse width modulated and controlled heater current (I.sub.HC). The control of this heater current (I.sub.HC) is provided directly by introducing the heater current nominal value (I.sub.HC nominal) from the outside or in a manner that the current emitted (I.sub.EC) from the thermionic emitting cathode is monitored and fed galvanically decoupled to the controller. Here the galvanic decoupled connection is achieved by a pulse width modulated, optical signal.
Abstract:
A circulating coolant reservoir is used to uniformly cool a removable crucible in an electron beam gun assembly for vaporizing material to be deposited at another location. The outer surface of the crucible is substantially immersed in the coolant reservoir and coolant is circulated around the outer surface from diametrically opposed inlet and outlet lines whose axes are tangent to the reservoir walls and with an upwardly spiraling groove in the crucible outer surface.