Abstract:
A pulsed CO2 laser is Q-switched by an intracavity acousto-optic (AO) Q-switch including an AO material transparent at a fundamental wavelength of the laser. In one example the AO material is germanium.
Abstract:
An improved dental laser system has been developed to cut enamel quickly and precisely, without detrimental residual energy, to provide a replacement for conventional high speed rotary burrs and commercially available dental laser systems.
Abstract:
A pulsed CO2 laser is Q-switched by an intracavity acousto-optic (AO) Q-switch including an AO material transparent at a fundamental wavelength of the laser. In one example the AO material is germanium.
Abstract:
A carbon-dioxide (CO2) gas-discharge slab laser includes elongated discharge-electrodes in a sealed enclosure. Radio Frequency (RF) power is supplied to the electrodes via an impedance matching network and a co-axial electrical low inductance transmission line feed-through sealed to the enclosure. The feed-trough includes two spring contacts which are configured to be spring compression push-fit in grooves in edges of the discharge-electrodes. A central conductor of the feed-through is fluid cooled. A capacitor of the impedance matching network is assembled on the central conductor as an integral part of the feed-trough.
Abstract:
A pulsed CO2 laser is Q-switched by an intracavity acousto-optic (AO) Q-switch including an AO material transparent at a fundamental wavelength of the laser. In one example the AO material is germanium.
Abstract:
A gas includes a housing having a symmetrical arrangement of upper and lower cooling members for removing heat generated in a gas-discharge excited by an electrode assembly. The electrode assembly is clamped between the cooling members and is itself essentially symmetrically arranged. The cooling members and the electrode assembly are mechanically isolated in the housing by a surrounding diaphragm-like arrangement that connects the cooling members to side-walls of the housing. An RF power-supply for supplying the electrode assembly is mounted on one of the sidewalls to avoid disturbing the symmetry of the cooling and electrode arrangements.
Abstract:
CO2 slab laser having a gas-filled tubular housing, sealed off at both ends by end pieces, which accommodates two overlapping electrodes extending into the tubular housing and mirrors arranged in the region of the electrodes, where each of the two end pieces holds an electrode, the mirrors are arranged stationary relative to the electrodes and the electrodes, jointly with the mirrors, are adjustable relative to one another.
Abstract:
A waveguide gas laser includes an enclosure filled with a lasing gas. A ceramic block is provided with one or more waveguide channels. At least one of the waveguide channels includes an open region which is in fluid communication with a waveguide channel. Lasing gas in the enclosure fills the waveguide channels and the lateral extension. An electric field is applied across the lateral extension of the waveguide channel while simultaneously applying a smaller electric field across the waveguide channel. The electric field across the lateral extension ignites a discharge in the lateral extension that spreads into the lasing gas in the waveguide channel. The electric field across the waveguide channel is sufficient to sustain the discharge in the lasing in the waveguide channel.
Abstract:
A folded waveguide CO2 laser includes a plurality of waveguides arranged in a zigzag pattern with ends thereof overlapping. The laser includes a resonator having an axis extending through the plurality of waveguides. At least a portion of at least one of the waveguides has a uniform minimum width selected cooperative with the height of the waveguide and the laser wavelength such that the resonator can oscillate in only a single mode. At least a portion of one of the waveguides is tapered such that its width increases in one direction along the resonator axis. Tapering one or more of the waveguides provides that the total waveguide area and potential power output of the laser is greater than that of a zigzag arrangement of waveguides having the same total length waveguides each having a uniform width equal to the minimum width of the waveguide in the tapered waveguide arrangement.
Abstract:
A F2-laser includes a discharge chamber filled with a gas mixture including molecular fluorine for generating a spectral emission in a wavelength range between 157 nm and 158 nm including a primary line and a secondary line, multiple electrodes coupled with a power supply circuit for producing a pulsed discharge to energize the molecular fluorine, a resonator including the discharge chamber and an interferometric device for generating a laser beam having a bandwidth of less than 1 pm, and a wavelength monitor coupled in a feedback loop with a processor for monitoring a spectral distribution of the laser beam. The processor controls an interferometric spectrum of the interferometric device based on the monitored spectral distribution such that sidebands within the spectral distribution are substantially minimized.