Abstract:
According to this method, in order to fabricate active elements which comprise at least one doped part comprising a doping capable of absorbing a pump beam and at least one undoped part, and which have opposed faces of the same geometrical shape, a process of preparing an elongate active rod (5), which has a cross section identical to said geometrical shape, said process comprising at least one step of cutting and one step of joining at least one doped block (6) and at least one undoped block (7, 8), and a process of forming a plurality of active elements from the active rod (5), said formation process comprising at least one step of transverse cutting along the active rod (5) and the step of collectively treating surfaces of the active elements, are carried out in succession.
Abstract:
Key technologies have been developed in realizing single longitudinal mode CW operation with a regular standing-wave cavity for intracavity frequency doubling and intracavity frequency conversions, so as to produce all solid-state, true cw devices with operation over wide spectral ranges including green, blue and UV. In one method, a beam expander (23 or 41) is applied to render a large mode waist and an improved beam divergence so as to greatly reduce the insertion losses for intracavity optical elements (17, 18 or 44). In another method, when spatial hole burning effect is minimized by using a pump head (12) with a thin gain zone (2), then a low resolving-power spectral filter with low loss can be utilized. In addition, several novel optical multipass constructions, typically by use of total-internal-reflection, have also been devised for pumping laser chips, laser rods, laser slabs, and for the use of multipass optical amplifier and pumping fiber lasers.
Abstract:
A total-internal-reflection thermally compensated rod laser including a lasing rod composed of crystalline or glass material doped with at least one lasing ion. The rod has an optical axis, an axially extending, substantially optically flat, exterior surface, and a substantially optically flat conical surface at each end. Both conical end surfaces are coaxial with the optical axis and has a truncated tip. The first end has a convex surface and the second end has a concave surface. The rod has a geometry, including a diameter and a length, selected to provide substantially no net depolarization of an incident beam.
Abstract:
A solid-state laser oscillating device which is inexpensive and capable of obtaining a high power. A plurality of laser crystals (YAG laser crystals, etc.) (1a, 1b, 1c) are arranged along the optical axis of an optical resonator so as to maintain optical contact with one another. Adjacent ones of the laser crystals have surfaces facing each other with an adhesive layer (10, 20) interposed therebetween, to form an array in a straight-line as a whole. An adhesive having a low light absorbance with respect to a laser beam of oscillation wavelength or an excitation light is used for forming the adhesive layers (10, 20). If the refractive index of the adhesive is substantially equal to that of the laser crystals, optical matching is achieved. The adhesive layers (10, 20) may be replaced by some other transparent material. The adjacent laser crystals may be arranged with a narrow gap therebetween or held in surface contact with each other.
Abstract:
A laser pump cavity apparatus with integral concentrator provides uniform gain and high absorption efficiency. The apparatus has a doped solid-state laser medium, a concentrator which has a top cladding layer formed on the top surface of the doped laser medium having a cylindrical focusing surface, a bottom cladding layer formed on the bottom surface of the doped laser crystal having a cylindrical focusing surface, and edge cladding layers formed on the side surfaces of the doped laser medium. Cold plates, each of which also preferably has one cylindrical surface of substantially identical shape, are placed in thermal contact with the cylindrical focusing surfaces of the top and bottom cladding layers to absorb heat. The cylindrical focusing surfaces preferably have hyperbolic or quasi-hyperbolic shape. The laser pump cavity apparatus is preferably edge-pumped with several laser diode arrays focused toward the line foci of the cylindrical focusing surfaces in directions transverse to a laser beam axis.
Abstract:
The present invention provides a solid state laser gain medium 28 comprising: (a) a gain layer 30 having pump regions 32 and first and second contact regions 34 and 36, respectively; (b) a first transparent layer 38 optically connected to the first contact region 34 of the gain layer 30 by diffusion bonding; and (c) a second transparent layer 40 optically connected to the second contact region 36 of the gain layer 30 by diffusion bonding. The transparent layers 38 and 40 are transparent to the lasing wavelength of the gain medium 28. The present invention also provides an apparatus for amplifying laser light, comprising: (a) a solid state, slab geometry gain medium 44 having lateral pump faces 46 and a principal radiation absorption axis C; and (b) an excitation mechanism 48 located along the pump faces 46 of the gain medium 44 for generating polarized light along a polarization axis 52 wherein the polarization axis 52 is parallel with the principal absorption axis C of the gain medium 44 to provide increased radiation absorption. The present invention also provides a cooling system 58 for a solid state gain medium 60 generating laser output laser emission at a wavelength from about 2 .mu.m to about 3 .mu.m. The cooling system 58 including a coolant material such as D2O for reducing absorption of laser emissions by the coolant at wavelengths from about 2 .mu.m to about 3 .mu.m.
Abstract:
A compact diode pumped laser including a nonuniform, single- or double-sided diode pumped laser head and a polarization output coupled (POC) resonator. The POC resonator employs reflections from two opposing uncrossed roof prism mirrors to produce a uniform near field and far field beam with diffraction or near diffraction limited quality. The single laser head particularly includes a laser rod, a sapphire envelope located about the rod, an area of antireflection coating located on the sapphire envelope between the rod and the diode array, and a high reflectivity nickel-plated indium layer located on the sapphire envelope on the surface thereof outside of the area of antireflection coating.
Abstract:
A longitudinally-cooled laser element assembly comprises an optically transparent heat sink (OTH) coupled to a laser element and a heat sink. An etalon structure including a first flat surface and a second, substantially parallel flat surface is formed in the laser element and/or the OTH. In some embodiments, a balanced etalon is provided by forming a reflector on the second flat surface of the etalon that has a reflectivity approximately equal to the Fresnel loss at the interface between the OTH and the laser element. In some embodiments the laser element assembly includes a second OTH coupled to the laser element at a second interface, thereby defining a second Fresnel loss. Preferably, the second OTH has an index of refraction substantially equal to the index of refraction of the first OTH, so that said first and second Fresnel losses are approximately equal and a balanced etalon is formed. In some embodiments the laser element comprises a solid-state gain medium. In other embodiments the laser element comprises a nonlinear frequency conversion crystal. An intracavity frequency-converted laser is described in which OTHs are used to cool both the gain medium and the nonlinear material.
Abstract:
A monolithic diode pumped solid-state laser (11) comprising as the laser host neodymium-doped yttrium orthovanadate (Nd:YVO.sub.4) (12, 52) or neodymium-doped gadolinium orthovanadate (Nd:GdVO.sub.4) (57, 67) operating on the .sup.4 F.sub.3/2 .fwdarw..sup.4 I.sub.9/2 (.about.914 nm or .about.912 nm respectively) transition, to which a suitable nonlinear optic material (16), such as potassium niobate (KNbO.sub.3) or beta barium borate (BBO), is bonded. The nonlinear crystal gives rise to intracavity frequency doubling to .about.457 or .about.456 nm. The microlaser is a composite cavity formed from a gain medium crystal and a nonlinear frequency doubling material which together have four spaced parallel dielectrically coated faces (14, 17, 18, 15) and which is positioned in close proximity to a diode laser pump source (13) for phase-matched harmonic generation of blue light along an axis of propagation which lies substantially perpendicular to the two faces of the composite cavity. By employing specific doping concentration-lengths products of lasant material and pumping the gain medium which has a specific crystalline orientation the desired efficient blue microlaser is achieved. Alternative embodiments combine the Nd:YVO.sub.4 and Nd:GdVO.sub.4 elements to enhance certain output characteristics of the laser.
Abstract:
A laser generating apparatus provided with the following is disclosed. That is to say, a rod shaped laser medium for receiving excitation light irradiation and emitting laser light having a prespecified wavelength, a reflecting tube having a central axis and possessing a rotating surface and two end surfaces, wherein an inner surface is made a reflecting surface, and the rod shaped laser medium is stored therewithin, and a virtual light source formation mechanism for forming an excitation virtual light source which can be construed as a point light source or a line light source, in the vicinity of the central axis. By means of this, a virtual light source having an energy distribution concentrated in the central part is formed, and it is possible to increase excitation efficiency.