Abstract:
A polycrystalline silicon layer is formed on an N-type silicon substrate via an oxide film. A contact hole is formed on the polycrystalline silicon layer by applying a photoresist mask and further by patterning a predetermined contact portion between a polycide gate and a diffusion layer. Thereafter, a P.sup.+ diffusion layer is formed by ion implantation with the use of the same photoresist mask. Further, a tungsten silicide layer is deposited all over the substrate. Or else, after the contact hole has been formed, the tungsten silicide layer is deposited, and then the P.sup.+ diffusion layer is formed by ion implantation. Alternatively, after the contact hole has been formed, a first ion implantation is made; and after the tungsten silicide layer has been deposited, a second ion implantation is made to form the P.sup.+ diffusion layer. In the manufacturing method as described above, an ohmic contact can be realized between the polycide gate electrode and the diffusion layer via the tungsten silicide layer, irrespective of the conductivity types of the gate electrode and the diffusion layer, without use of any additional metallic layer other than the polycide.
Abstract:
A device and a method of manufacture of a semiconductor device on a semiconductor substrate including an SRAM cell with a resistor comprises forming a first polycrystalline silicon containing layer on the semiconductor substrate, patterning and etching the first polycrystalline silicon containing layer to form steps on either side thereof, forming a dielectric layer over the first polycrystalline silicon containing layer with the steps on either side of the first polycrystalline silicon containing layer, forming a blanket of a second polycrystalline silicon containing layer extending over the interpolysilicon layer, and ion implanting the second polycrystalline silicon containing layer in a blanket implant of a light dose of dopant including ion implanting resistive regions with far higher resistivity in the regions over the steps.
Abstract:
A method of manufacture of a semiconductor device on a semiconductor substrate including an SRAM cell with a resistor comprises formation of a polysilicon 1 layer on said semiconductor substrate. The polysilicon 1 layer is patterned and etched. An interpolysilicon layer is formed over the polysilicon 1 layer, patterned and etched forming an opening through the interpolysilicon layer exposing a contact area on the surface of the polysilicon 1 layer. A SIPOS layer forms a resistor material over the interpolysilicon layer in contact with the polysilicon 1 layer through the opening. A load resistor mask is formed over a load resistor region to be formed in the SIPOS layer, and ions are implanted in the remainder of the SIPOS layer not covered by the load resistor mask to convert the remainder of the SIPOS layer from a resistor into an interconnect structure integral with a load resistor in the load resistor region.
Abstract:
An SRAM cell having at least four field effect transistors includes, a) at least four transistor gates, a ground line, a Vcc line, and a pair of pull-up resistors; the four transistor gates having associated transistor diffusion regions operatively adjacent thereto; and b) the Vcc line and the ground line being provided in different respective elevational planes, the pull-up resistors being substantially vertically elongated between Vcc and selected of the respective transistor diffusion regions operatively adjacent the gates. In an additional aspect, an SRAM cell having at least four field effect transistors includes, i) at least four transistor gates, an electrical interconnect line, a Vcc line, and a pair of pull-up resistors; the four transistor gates having associated transistor diffusion regions operatively adjacent thereto; and ii) the Vcc line and the electrical interconnect line being provided in different respective elevational planes, the pull-up resistors being substantially vertically elongated between Vcc and selected of the respective transistor diffusion regions operatively adjacent the gates.
Abstract:
Lightly doped active regions in a semiconductor structure reduce occurrences of pipeline defects. The light doped active region are typically employed where performance is not adversely affected. For example, in memory cells, pass transistors have lightly doped drains which directly connect to bit lines. A pass transistor of this type can have the source more heavily doped than the drain. Alternatively, drains and sources of pass transistors are lightly doped. Drains of pull-down transistors can also be lightly doped. The difference in doping of active regions does not increase fabrication processing steps because conventionally active regions are formed by two doping steps to create a lightly doped portions adjacent gates where field strength is highest. The invention changes such processes by covering the desired lightly active regions with the mask used during a second doping process.
Abstract:
A method of forming an SRAM cell includes, a) providing a pair of pull-down gates having associated transistor diffusion regions operatively adjacent thereto, one of the diffusion regions of each pull-down gate being electrically connected to the other pull-down gate; b) providing a pair of pull-up resistor nodes for electrical connection with a pair of respective pull-up resistors, the pull-up nodes being in respective electrical connection with one of the pull-down gate diffusion regions and the other pull-down gate; c) providing a first electrical insulating layer outwardly of the resistor nodes; d) providing a pair of contact openings, with respective widths, through the first insulating layer to the pair of resistor nodes; e) providing a second electrical insulating layer over the first layer and to within the pair of contact openings to a thickness which is less than one-half the open widths; f) anisotropically etching the second electrical insulating layer to define respective electrical insulating annulus spacers received within the respective pair of contact openings and a pair of elongated pull-up resistor openings laterally inward thereof; g) providing electrically conductive material within the pair of elongated pull-up resistor openings in electrical connection with the pair of pull-up resistor nodes to define the pull-up resistors; and h) providing a Vcc line in electrical connection with the pull-up resistors. SRAM circuitry produced according to the above method and by other methods are also contemplated.
Abstract:
A static memory cell having no more than three transistors. A static memory cell is formed by providing a semiconductor substrate; forming a buried n-type layer in the substrate, the n-type layer having a first average n-type dopant concentration of at least 1.times.10.sup.16 ions/cm.sup.3 ; forming an n-channel transistor relative to the substrate over the buried n-type layer, the n-channel transistor having a source, a gate, and a drain, the source having a second average n-type dopant concentration of at least 1.times.10.sup.19 ions/cm.sup.3 and the drain having a third average n-type dopant concentration of at least 1.times.10.sup.19 ions/cm.sup.3, and the source having a depth deeper than the drain so as to be closer to the buried n-type layer than the drain; and forming a p-type region in junction with the source to define a tunnel diode between the p-type region and the source.
Abstract translation:具有不超过三个晶体管的静态存储单元。 通过提供半导体衬底形成静态存储单元; 在衬底中形成掩埋的n型层,n型层具有至少1×10 16个离子/ cm 3的第一平均n型掺杂剂浓度; 在所述掩埋的n型层上形成相对于所述衬底的n沟道晶体管,所述n沟道晶体管具有源极,栅极和漏极,所述源极具有至少1×1019个离子的第二平均n型掺杂剂浓度 并且所述漏极具有至少1×1019个离子/ cm 3的第三平均n型掺杂剂浓度,并且所述源的深度比所述漏极深,以便比所述漏极更接近所述掩埋的n型层; 以及在与源极连接处形成p型区域以在p型区域和源极之间限定隧道二极管。
Abstract:
In a semiconductor device, an undoped polysilicon layer on the uppermost layer is used as a resistor having a high resistance without any patterning. A metal wiring layer formed on this resistor is connected to a conductive layer formed below the resistor via a contact hole extending through the high resistor device. In addition, by oxidizing an end portion, exposed in the contact hole, of the resistor, an oxide film is interposed between the high resistor device and the metal wiring layer to attain electrical insulation therebetween. In this manner, the resistor is formed of the undoped polysilicon layer by using a multilayered polysilicon structure including the undoped polysilicon layer. Therefore, the integration degree can be increased, and at the same time, a stepped portion accompanying the multilayered silicon structure is relaxed to improve the flatness of the surface and prevent poor step coverage or bridging of an upper wiring layer.
Abstract:
SRAM cells are manufactured with balanced, high-resistance load resistances by having substantially all of dielectric layer directly over the polysilicon load resistor covered by a metal layer. The metal layer protects the polysilicon during subsequent processing which can adversely alter its characteristics.
Abstract:
A method is provided for manufacturing a polysilicon load resistor of a semiconductor memory cell. The semiconductor memory cell is formed with at least one transistor and has a semiconductor substrate with a gate dielectric layer on a portion thereof, and a gate electrode layer over the gate dielectric layer. The method includes the steps of: (a) depositing a insulating layer over the gate electrode layer and the remaining portion of the semiconductor substrate around the gate electrode and gate dielectric layers; (b) depositing a polysilicon layer over the insulating layer; (c) implanting ions in the polysilicon layer so as to adjust resistance thereof; (d) etching the polysilicon layer so as to form a high resistance load resistor; (e) etching the insulating layer so as to expose a portion of the gate electrode layer; and (f) forming a metal contact at two ends of the load resistor, one of the metal contacts being located on the exposed portion of the gate electrode so as to establish electrical connection between the gate electrode layer and the load resistor.