Abstract:
The need for backup diesel generators in a data center is obviated by using fuel cells to convert a fuel to electrical energy, which provide backup power to equipment in a data center, which may include the servers in the data center and other important systems that normally use utility power. When the utility power fails, the equipment switches to backup power that is provided by fuel cells supplied with fuel (such as natural gas), possibly using a source of temporary power (e.g., a UPS or direct tie-in of batteries) while the fuel cells come online. The fuel may also be used to power a turbine or generator, coupled to a chiller for providing a cooled liquid to a cooling system.
Abstract:
A power supply circuit includes a connector, a first power supply module, and a second power supply module. The first power supply module is connected to, and supplies power to, the connector. The second power supply module is connected to the connector and the first power supply module. The first power supply module stops supplying power to the connector and outputs a control signal to the second power supply module when a current flowing through the first power supply module exceeds a certain limit. The second power supply module supplies power to the connector when the second power supply module receives the control signal.
Abstract:
An uninterruptible power supply (UPS system) includes a first converter circuit, a second converter circuit and a DC bus coupled to the first and second converter circuits. The system further includes a control circuit configured to control the first and second converter circuits and to selectively couple the first and second converter circuits to an AC source and a load to provide a first mode of operation wherein the first and second converter circuits respectively operate as a rectifier and an inverter to serve the load from the AC source and a second mode of operation wherein the first and second converter circuits operate as parallel inverters to serve the load from the DC bus. The control circuit may be configured to couple the AC source to the load to bypass the first and second converter circuits in a third mode of operation.
Abstract:
A method for controlling a power supply device for at least one electrical machine, having at least one storage device for electric energy (battery) and an inverter equipped with at least one reactor, the inverter having dual functions, being provided for charging (charge operation) the storage device from an in particular stationary power supply system, and for supplying the electrical machine with an alternating current in driving operation. A setpoint charge power is specified for the charge operation, and the reactor current is set accordingly by the inverter. Furthermore, a power supply device is also described.
Abstract:
A branch circuit monitoring system (BCMS) for monitoring branch circuit currents in one or more electrical circuit panels is described. The system is comprised of a data center server, one or more panel processors, each with one or more collection devices, and one or more current sensors per collection device. The BCMS is designed to be installed entirely inside the panel without the need for a dedicated enclosure or power supply to facilitate ease of installation and low-cost. The BCMS also allows for future upgradability through standard software updates so that the system can be updated or patched easily. The BCMS data center server collects, aggregates, stores, and serves historical branch circuit current data from the panel processors to networked users via a web server to provide visualization of data such as tables, charts, and gauges. Finally, the BCMS interfaces to third-party software suites using industry-standard protocols such as Modbus® TCP and BACnet™ for integration with data center infrastructure management or building management system software.
Abstract:
Phase angle detection techniques for phase-cut dimming lighting circuitry are disclosed. A phase-cut lighting driver circuit may include galvanic isolation circuitry having a primary and secondary side. The phase angle information of a phase-cut signal may be detected on the secondary side of the driver circuitry, and a microcontroller can create a dimming signal that adjusts the driver output power according to the phase angle information. In some embodiments, the phase angle detection techniques may be utilized to control the output of lighting driver circuitry, such as a phase-cut dimming LED driver.
Abstract:
An electric power system includes: an uninterruptible power supply including an AC switch provided between a commercial power supply and an output part, a secondary battery, and an inverter provided between the AC switch and secondary battery; an important load connected to the output part; a distributed power supply connected to the output part; total load power consumption detection section detecting the power consumption of all loads including the important load; charge/discharge power detection section detecting charge/discharge power of the secondary battery; output power detection section detecting the output power of the distributed power supply; important load power consumption detection section detecting the power consumption of the important load; and a controller that inputs thereto detection values from the total load power consumption detection section, charge/discharge detection section, output power detection section, and important load power consumption detection section and outputs a control command value for controlling the secondary battery.
Abstract:
A method and apparatus to balance adapter power supply and computing device power demand. In one embodiment, power to/from battery pack(s) maybe controlled by adjusting the output voltage of the power adapter via the current input to the power adapter through a feedback pin to meet power demand of electrical loads. Another embodiment provides a way to adjust the activities of the electrical loads such that neither adapter power rating nor the electrical load power limit is exceeded while avoiding system shutdown.
Abstract:
A demand response management system which may be implemented with demand response logic. The system may be used by utilities, independent system operators, intermediaries and others to manage operations of demand response programs relative to customers, clients, participants, and users of outputs from the utilities, independent system operators, and the like. Demand response logic of the demand response management system may provide demand signal propagation and generation from demand response events.
Abstract:
A discharge apparatus for auxiliary power is applied to an alternating current power apparatus and a switching power supply. The switching power supply includes an auxiliary power unit. The auxiliary power unit will not discharge to the discharge apparatus for auxiliary power when the alternating current power apparatus supplies power to the discharge apparatus for auxiliary power and the auxiliary power unit. The auxiliary power unit will discharge to the discharge apparatus for auxiliary power when the alternating current power apparatus stops supplying power to the discharge apparatus for auxiliary power and the auxiliary power unit.