摘要:
A technique for improving the frequency response of a semiconductor device employing silicon as the semiconductor material. Parasitic components inherent in semiconductor devices degrade the performance of these devices at higher frequencies. Typically, a parasitic capacitor includes a dielectric material sandwiched between a conductive interconnect (31A, 31B) and a substrate (10) or a bottom contact (18). Further, in the past, the thickness of this dielectric material has been similar to that of the third dielectric material (17) of the present invention. However, in the present invention the effective thickness of the dielectric material has been increased by including a first and second dielectric material (15, 16) as well as the third dielectric material (17). Increasing the thickness of the dielectric of a parasitic capacitor decreases the value of the parasitic capacitance; and therefore increases the cut-off frequency of the semiconductor device.
摘要:
A silicon diaphragm piezoresistive pressure sensor having a diaphragm formed by a single-sided fabrication method. The pressure sensor is made up of a substrate on which there is a diaphragm at or near the surface of the substrate with a chamber under the diaphragm. The pressure sensor is fabricated by undercutting a silicon substrate to form a diaphragm and a cavity within the bulk of the substrate under the diaphragm. The fabricating steps including a) forming a buried low resistive layer under a predetermined diaphragm region; b) converting the low resistance layer into porous silicon by anodization of silicon in a concentrated hydrofluoric acid solution; c) removing the porous silicon by selective etching; d) filling the openings formed in the etching of porous silicon with a deposited material to form a sealed reference chamber. Adding appropriate means to the exterior of the diaphragm and substrate to detect changes in pressure between the reference chamber and the surface of the substrate.
摘要:
An isolation structure as well as a method for using and fabricating an isolation structure in an active layer deposited on a substrate the method of fabrication including the steps of forming a buried oxide layer in the active layer adjacent the substrate, forming an isolation trench in the active layer by etching at least up to and optionally into the substrate, forming a dielectric isolation layer on the exposed surfaces of the trench, removing the dielectric isolation layer from the bottom of the trench, and forming an isolation structure by epitaxially growing monocrystalline silicon in the trench.
摘要:
A structure for and method of forming a trench in a semiconductor body is disclosed herein. A field oxide 16 is grown over a portion of n-well 8 where trench 26 is to be formed. Nitride layer 20 and TEOS oxide layer 22 are deposited. Resist 24 is patterned and TEOS layer 22, nitride layer 20, and field oxide layer 16 are etched. Resist 24 is removed and trench 26 is etched through n-well 8 and into substrate 4. Thin oxide 28 is then grown on the sidewalls of trench 26. Polysilicon is deposited into trench 26 and etched back to form polysilicon plug 30. Sidewall oxide 32, to prevent voids in the topography of trench 26, is formed on top of polysilicon plug 30 along the outer edges of trench 26. To prevent leakage into trench 26, a thick thermal oxide cap 34 is grown over trench 26.
摘要:
A method of fabricating a semiconductor structure includes providing a substrate having at least one layer formed thereon. At least two trenches are formed through the layer and into the substrate wherein at least one trench is for isolation and at least one trench is for making contact to the substrate. After a trench liner is formed on the sidewalls of the trenches, the trenches are filled with doped semiconductor material. The doped semiconductor material in the trench for isolation is then anodized. After the anodization, the anodized trench fill material is oxidized.
摘要:
A process of manufacturing a trench-isolated semiconductor structure comprises forming a first `pad` (e.g. MOS gate) oxide layer on a first surface of a silicon substrate. An oxide etch protective layer of silicon nitride is selectively formed on a first portion of the pad oxide layer so as to overlie a first surface portion of the silicon substrate in which active device regions will be introduced. A second oxide layer is then deposited on the pad oxide layer and on the nitride layer. The dual oxide layer is then patterned to form a trench mask which exposes a second surface portion of the silicon substrate. An etchant is then applied to the structure so as to etch away material from the silicon substrate exposed by the second surface portion and a portion of the second oxide layer, thereby forming a trench in the second surface portion of the silicon substrate. After any remaining portion of the second oxide layer is removed, local oxidation of the structure is performed so as to form a third oxide layer in the trench and a field oxide at surface portions of the substrate adjacent to the nitride layer. A layer of polysilicon is non-selectively deposited over the entire structure to fill the oxide-lined trench and then polished down to the nitride layer which serves as a polishing stop. The nitride is then stripped off the pad oxide in preparation for device region processing.
摘要:
An isolation method of semiconductor devices comprises the steps of forming a multilayer, defining both active and isolating regions, forming a channel stopper, removing the multilayer on a nitride layer to form a capping oxide layer, removing the multilayer on the nitride layer and a polysilicon layer to form an isolation layer, forming spacers at sidewalls of the isolation region, forming a gate oxide layer and a gate oxide electrode, and forming a second conductive diffusion regions, wherein the CVD process and photolithography methods are applied in formation of the isolating layer not to result in the bird's beak and dislocation caused by stress and the channel stopper is formed by ion-implantation of impurity without its diffusion not to contact with the isolating layer by the spacers on the sidewalls thereof in its diffusion region which is formed by the ion-implantation. Therefore, according to the present invention, the limit of the isolation can be extended into a sub-micron range so as to prevent the narrow channel effect and increase the breakdown voltage.
摘要:
A process for forming a semiconductor device isolation region which comprises:a) forming on a silicon substrate at least a first thin silicon oxide film and a first silicon nitride film thereon,b) etching the substrate using a resist pattern to form a trench for providing an isolation region,c) forming a second silicon oxide film and a second silicon nitride film on the side walls and bottom wall of the trench,d) subsequently forming a first polycrystalline silicon film on the substrate including the trench, leaving the first polycrystalline silicon film only on the side walls of the trench by anisotropic etching and thereafter oxidizing the remaining first polycrystalline silicon film to form an oxide film on the side walls of the trench, ande) further forming a second polycrystalline silicon film over the semiconductor substrate including the trench, leaving the second polycrystalline silicon film only between the oxide film portions on the side walls of the trench by anisotropic etching and thereafter oxidizing the remaining second polycrystalline silicon film to thereby form an oxide film.
摘要:
An isolation structure as well as a method for using and fabricating an isolation structure in an active layer deposited on a substrate the method of fabrication including the steps of forming a buried oxide layer in the active layer adjacent the substrate, forming an isolation trench in the active layer by etching at least up to and optionally into the substrate, forming a dielectric isolation layer on the exposed surfaces of the trench, removing the dielectric isolation layer from the bottom of the trench, and forming an isolation structure by epitaxially growing monocrystalline silicon in the trench.
摘要:
A method for making a bipolar integrated circuit structure in a semiconductor substrate. A layer of insulating material having an implantation opening is formed on the upper surface of the semiconductor substrate. A polysilicon layer is formed in the implantation opening. A doping material is implanted into the polysilicon-filled opening. The doping material is diffused into the substrate material from the polysilicon-filled opening.