Abstract:
Apparatus and methods for current sensing in switching regulators are provided. In certain implementations, a switching regulator includes a switch transistor, a replica transistor, a sense resistor, and a current sensing circuit. The drain and gate of the switch transistor can be electrically connected to the drain and gate of the replica transistor, respectively. The current sensing circuit can generate an output current that varies in response to a sense current from a source of the replica transistor. Additionally, the current sensing circuit can sink the sense current when the sense current flows from the drain to the source of the replica transistor and source the sense current when the sense current flows from the source to the drain of the replica transistor. The sense resistor can receive the output current such that the voltage across the sense resistor changes in relation to the current through the switch transistor.
Abstract:
A MEMS sensor includes a micro-electromechanical structure, a detection circuit, and a self-test circuit to test the health of the MEMS sensor during runtime operations. The self-test circuit is configured to inject into the micro-electromechanical structure a plurality of injected test signals that are broad-band frequency-varying frequency signals, which are based on spread spectrum based modulation. The injected test signals may a magnitude that is below an observable threshold of the sensor signal as well as a test-signal bandwidth that overlaps with a substantial portion of the sensor bandwidth, including the stimulus of interest.
Abstract:
A system and method for removing noise from images are disclosed herein. An exemplary system includes an edge-detection-based adaptive filter that identifies edge pixels and non-edge pixels in an image and selects a filtering technique for at least one non-edge pixel based on a comparison of the at least one non-edge pixel to a neighboring pixel region, wherein such comparison indicates whether the at least one non-edge pixel is a result of low-light noise.
Abstract:
Integrated crash and vehicle movement sensing by use of distributed new multi-axis satellite sensors combines side and/or front/rear crash sensing with other applications requiring dynamic vehicle movement data like (but not limited to) roll and/or pitch detection as well as active suspension, head light beam leveling, etc. Depending on the required functionality, two or more satellite sensor modules are used, which measure multi-axis high-g and low-g acceleration, without needing any further sensor inputs like gyroscopes while achieving a high level of failsafe and redundancy.
Abstract:
According to an example embodiment, a processor such as a digital signal processor (DSP), is provided with a register acting as a predicate counter. The predicate counter may include more than two useful values, and in addition to acting as a condition for executing an instruction, may also keep track of nesting levels within a loop or conditional branch. In some cases, the predicate counter may be configured to operate in single-instruction, multiple data (SIMD) mode, or SIMD-within-a-register (SWAR) mode.
Abstract:
A magnetic core is provided for an integrated circuit, the magnetic core comprising: a plurality of layers of magnetically functional material; a plurality of layers of a first insulating material; and at least one layer of an secondary insulating material; wherein layers of the first insulating material are interposed between layers of the magnetically functional material to form subsections of the magnetic core, and the at least one layer of second insulating material is interposed between adjacent subsections.
Abstract:
In one particular example, this disclosure provides an efficient mechanism to determine the degree of parallelization possible for a loop in the presence of possible memory aliases that cannot be resolved at compile-time. Hardware instructions are provided that test memory addresses at run-time and set a mode or register that enables a single instance of a loop to run the maximum number of SIMD (Single Instruction, Multiple Data) lanes to run in parallel that obey the semantics of the original scalar loop. Other hardware features that extend applicability or performance of such instructions are enumerated.
Abstract:
Various methods and systems are provided to control a probe moving towards fluid held in a container. The probe is moved towards the fluid to take a sample of the fluid in the container. To take a sample, probe is actuated to hit the fluid surface and to pass the fluid surface by a predetermined distance. Capacitive sensing which incorporates the probe itself is used to support an approach engine for controlling the motion of the probe. The approach engine determines the speed of the probe based on capacitance measurements, and in some cases based on position information of the probe. The approach engine ensures the probe hits the surface of the fluid in the container in order to take a sample while ensuring the probe does not hit the bottom of the container.
Abstract:
According to an example embodiment, a processor such as a digital signal processor (DSP), is provided with a register acting as a predicate counter. The predicate counter may include more than two useful values, and in addition to acting as a condition for executing an instruction, may also keep track of nesting levels within a loop or conditional branch. In some cases, the predicate counter may be configured to operate in single-instruction, multiple data (SIMD) mode, or SIMD-within-a-register (SWAR) mode.
Abstract:
In an example embodiment, an amplifier having high gain and high slew rate is provided and includes a pair of input transistors to which input voltage is applied, a pair of diode-connected loads coupled to the input transistors, at least one pair of current sources coupled to the diode-connected loads, and a bias control configured to turn off the at least one pair of current sources to enable high slew rate for the amplifier and to turn on the at least one pair of current sources to enable high gain for the amplifier. In specific embodiments, the current sources include transistors, the bias control controls a bias voltage to the current sources, and the bias voltage is driven to the supply voltage (VDD) to turn off the current sources.