Abstract:
Process for treating polyolefin particles obtained by gas-phase polymerization of one or more olefins in the presence of a polymerization catalyst system and a C3-C5 alkane as polymerization diluent in a gas-phase polymerization reactor, the process comprising the steps of a) discharging the polyolefin particles continuously or discontinuously from the gas-phase polymerization reactor and transferring the particles to a first degassing vessel; b) contacting therein the polyolefin particles with a gaseous stream comprising at least 85 mol-% of C3-C5 alkane while the polyolefin particles have an average residence time in the first degassing vessel of from 5 minutes to 5 hours; c) transferring the polyolefin particles to a second degassing vessel; d) contacting therein the polyolefin particles with a stream comprising nitrogen and steam while the polyolefin particles have an average residence time in the second degassing vessel of from 5 minutes to 2 hours, wherein the contacting is carried out at conditions under which no condensation of water occurs; e) transferring the polyolefin particles to a third degassing vessel; f) contacting therein the polyolefin particles with a stream of nitrogen while the polyolefin particles have an average residence time in the third degassing vessel of from 5 minutes to 8 hours, and processes for preparing polyolefin polymers by gas-phase polymerization of one or more olefins in the presence of a polymerization catalyst system and a C3-C5 alkane as polymerization diluent in a gas-phase polymerization reactor, wherein the obtained polyolefin particles are subjected to such a treating process.
Abstract:
Polyethylene composition with improved balance of impact resistance at low temperatures and Environmental Stress Cracking Resistance (ESCR), particularly suited for producing protective coatings on metal pipes, said composition having the following features:1) density from 0.938 to 0.948 g/cm3;2) ratio MIF/MIP from 15 to 25;3) MIF from 30 to 45 g/10 min.;4) Mz equal to or greater than 1000000 g/mol;5) LCBI equal to or greater than 0.55.
Abstract:
Polyethylene composition with improved swell ratio and mechanical properties, particularly suited for preparing blow-moulded articles, said composition having the following features: 1) density from 0.952 to 0.960 g/cm3; 2) ratio MIF/MIP from 17 to 30; 3) Shear-Induced Crystallization Index SIC from 2.5 to 5.0.
Abstract:
A process for the gas-phase polymerization of ethylene or a mixture of ethylene and one or more 1 olefins in the presence of a polymerization catalyst system comprising the steps a) feeding a solid catalyst component, which was obtained by contacting at least a magnesium compound and a titanium compound, to a continuously operated apparatus and contacting the solid catalyst component with an aluminum alkyl compound at a temperature of from 0° C. to 70° C. in a way that the mean residence time of the solid catalyst component in contact with the aluminum alkyl compound is from 5 to 300 minutes; b) transferring the catalyst component formed in step a) into another continuously operated apparatus and prepolymerizing it with ethylene or a mixture of ethylene and one or more 1 olefins in suspension at a temperature of from 10° C. to 80° forming polymer in an amount of from 0.2 to 25 g polymer/g of solid catalyst component in a way that the mean residence time of the solid catalyst component in the apparatus is from 5 minutes to 3 hours; and c) transferring the prepolymerized catalyst component formed in step b) into a gas-phase polymerization reactor and polymerizing ethylene or a mixture of ethylene and one or more 1 olefins in the presence of the prepolymerized catalyst component at temperatures of from 40° C. to 120° C. and pressures of from 0.1 to 10 MPa.
Abstract:
A two steps polymerization process for obtaining a polyolefin composition comprising: a) from 25 wt % to 70 wt % of a propylene homopolymer or a propylene-ethylene copolymer containing from 0.1 wt % to 10 wt % of ethylene derived units; b) from 27 wt % to 70 wt % of a copolymer of ethylene and at least one C3-C20 alpha olefins, wherein the ethylene derived units content ranges from 15 wt % to 70 wt %; c) from 3 wt % to 20 wt % of polyethylene homopolymer or an ethylene and at least one C3-C20 alpha olefins copolymer; the sum a)+b)+c) being 100, wherein said process comprises: step a) contacting under polymerization conditions propylene, optionally ethylene and the catalyst system in order to obtain component a), step b) contacting under polymerization conditions ethylene and at least one C3-C20 alpha-olefins and the catalyst system in order to obtain components b) and c); wherein the catalyst system comprises a metallocene compound and an iron complex.
Abstract:
A process for preparing an ethylene polymer in a suspension polymerization including the steps of separating the formed suspension of ethylene polymer particles in a solid-liquid separator into wet ethylene polymer particles and mother liquor, drying the wet ethylene polymer particles by a gas stream and forming a gas stream carrying a hydrocarbon load, and thereafter separating the hydrocarbon load from the gas stream and thereby forming a liquid hydrocarbon recover stream, transferring a part of the mother liquor into a work-up section including an evaporator for producing a wax-depleted portion of the mother liquor and a diluent distillation unit for producing isolated diluent from the wax-depleted portion of the mother liquor, wherein a first part of the hydrocarbon recover stream is transferred to the diluent distillation unit without passing the evaporator for producing the wax-depleted portion of the mother liquor.
Abstract:
Embodiments of the present disclosure relate to a method of preparing polyethylene compositions comprising polymerizing ethylene in a first gas-phase reactor and polymerizing ethylene in a second gas-phase reactor in the presence of hydrogen; wherein at least one of the first or second gas-phase reactors comprises a first and second polymerization zone; wherein a hydrogen pressure of the first and second polymerization zones are different such that at least a portion of the second ethylene cycles through the first and second polymerization zones and a gas mixture of each polymerization zone is partially or totally prevented from entering the other zone.
Abstract:
A process for polymerizing ethylene in a high-pressure polymerization system having a continuously operated polymerization reactor and a reactor blow down system having an emergency valve, a reactor blow down vessel containing an aqueous medium and a reactor blow down dump vessel, wherein the process includes the steps of monitoring the polymerization system for a disturbance, opening the emergency valve when a disturbance occurs to allow the content of the polymerization system to expand into the reactor blow down vessel, contacting the content of the polymerization system in the reactor blow down vessel with the aqueous medium to obtain an aqueous polymer slurry, separating the polymer slurry and gaseous components, and transferring the polymer slurry to the reactor blow down dump vessel.
Abstract:
A polyethylene composition for preparing filaments and fibers, made from or containing:
A) from 65% to 97% by weight of a copolymer of ethylene having:
1) a density of 0.925 g/cm3 or higher; and 2) a MI2 value of 0.5 g/10 min. or greater; and
B) from 3% to 35% by weight of a polyolefin composition made from or containing:
BI) from 5% to 35% by weight of a propylene homopolymer; BII) from 20% to 50% by weight of an ethylene homopolymer or a copolymer of ethylene with up to 5% by weight of alpha-olefin comonomers, containing 5% by weight or less of a fraction soluble in xylene at 25° C.; and BIII) from 30% to 60% by weight of a terpolymer of ethylene, propylene, and 1-butene containing from 30% to 85% by weight of a fraction soluble in xylene at 25° C.
Abstract:
An extrusion-based additive manufacturing process including the step of selectively depositing a molten thermoplastic material (P) on a film or sheet made from or containing a polymer blend obtained by melt blending a mixture made from or containing:
(A) 60% to 98.8% by weight of a polyolefin; (B) 0.1% to 30% by weight of a compatibilizer; (C) 0.05% to 20% by weight of an amino resin; and (D) 0% to 5% by weight of an additive, wherein the amounts of (A), (B), (C) and (D) are based on the total weight of (A)+(B)+(C)+(D).