Abstract:
The technology of the 4D-GIS system deploys a GIS-based algorithm used to determine the location of a moving target through registering the terrain image obtained from a Moving Target Indication (MTI) sensor or small Unmanned Aerial Vehicle (UAV) camera with the digital map from GIS. For motion prediction the target state is estimated using an Extended Kalman Filter (EKF). In order to enhance the prediction of the moving target's trajectory a fuzzy logic reasoning algorithm is used to estimate the destination of a moving target through synthesizing data from GIS, target statistics, tactics and other past experience derived information, such as, likely moving direction of targets in correlation with the nature of the terrain and surmised mission.
Abstract:
A signal transmission device is provided. The signal transmission device comprises a linked unit, a data connector, a sliding block, a link and a lock block. The linked unit includes a first shaft, a second shaft, a third shaft, a first elastomer and a second elastomer. The data connector rotates and expands according to the first shaft and the first elastomer. During the retraction of the data connector, the data connector pushes the sliding block. Then the sliding block moves against the lock block so that the lock block rotates according to the second shaft. The lock block rotates to lock and secure the data connector by the lock piece, while a cam of the link moves to a secure location along an incline plane of a track of the sliding block.
Abstract:
A driving method for driving a display panel is provided. The display panel includes a plurality of scan lines, a plurality of data lines, and a plurality of pixel units electrically connected to the scan lines and the data lines. The driving method comprises enabling the pixel units controlled by the scan lines through different scanning sequences and inputs image data to the pixel units via the data lines in several consecutive frame times, wherein capacitance coupling effects between the pixel units are varied depending on the scanning sequences. Accordingly, the line mura caused by the capacitance coupling effect is restrained.
Abstract:
Embodiments of the present invention generally relate to processing of peptides in urea solutions and substantial prevention of carbamylation of the peptide.
Abstract:
The present invention discloses a semiconductor device package structure with redistribution layer (RDL) and through silicon via (TSV) techniques. The package structure comprises an electronic element which includes a dielectric layer on a backside surface of the electronic element, a plurality of first conductive through vias across through the electronic element and the dielectric layer, and a plurality of conductive pads accompanying the first conductive through vias on an active surface of the electronic element; a filler material disposed adjacent to the electronic element; a first redistribution layer disposed over the dielectric layer and the filler material, and connected to the first conductive through vias; a first protective layer disposed over the active surface of the electronic element, the conductive pads, and the filler material; and a second protective layer disposed over the redistribution layer, the dielectric layer, and the filler material.
Abstract:
A method and system for Self-calibrated Azimuth and Attitude Accuracy Enhancing are disclosed, wherein SAAAEMS approach is based on fully auto-calibration self-contained INS principles, not depending on magnetometers for azimuth/heading determination, and thus the system outputs and performance are not affected by the environmental magnetic fields. In order to reduce the system size and cost, this new innovative methods and algorithms are used for SAAAEMS system configuration and integration. Compared to a conventional INS for gyrocompassing, AGNC's approach uses a smaller number of high accuracy sensors: SAAAEMS uses only one 2-axis high accuracy gyro (for example, one DTG) instead of 3-axis; the third axis gyro is a MEMS gyro. It uses only 2 high accuracy accelerometers instead of 3, since the two accelerometers are used only for gyrocompassing not for navigation. These two changes to the conventional INS system configuration remarkably reduce the whole system size and cost. SAAAEMS, uses dynamic gyrocompassing processing for isolation of Base motion disturbance/interference and vibration. SAAAEMS provides a method and system for using automatic methods for system calibration.
Abstract:
The present invention provides a conductor package structure comprising an optical sensor element. A filling material is filled around the optical sensor element. At least one conductor element is formed through the filling material from top side to the back side for signal connection. A redistribution layer is formed on the at least one conductor element and coupled to die pad of the optical sensor element. A transparent material is formed on the redistribution layer.
Abstract:
The present invention provides a treating unit of activated sludge for wastewater treatment and a treating apparatus having the same. The treating unit is constructed by a cage-shaped supporting structure which defines an interior space for containing the microbial cell therein. The present invention provides a measure for simultaneous removal of organics and nitrogen compounds from the wastewater under a condition of controlled aeration, and makes the configuration of treating apparatus as well as the treating process more simplified. It is also an alternative to replace the traditional A2O process. According to the present invention, the design of sludge return, which is essential for the conventional activated sludge treatment, is not needed. Moreover, the present invention is compatible with the conventional activated sludge treatment process and is advantageous in its short start-up period during which a stable operation is achievable.
Abstract:
A real time kernel for deploying health monitoring functions in Condition Base Maintenance (CBM) and Real Time Monitoring (RTM) systems is disclosed in this invention. The Optimized Neuro Genetic Fast Estimator (ONGFE) allows embedding failure detection, identification, and prognostics (FDI&P) capability by using Intelligent Software Element (ISE) based upon Artificial Neural Network (ANN). ONGFE enables embedded fast and on-line training for designing ANNs, which perform very high performance FDI&P functions. An advantage is the optimization block based on pseudogenetic algorithms, which compensate for effects due to initial weight values and local minimums without the computational burden of genetic algorithms. It provides a synchronization block for communication with secondary diagnostic modules. Also a scheme for conducting sensor data validation is embedded in Smart Sensors (SS). The algorithms are designed for a distributed, scalar, and modular deployment. The system electronics is built upon a network of smart sensors and a health monitoring computer for providing data acquisition capability and distributed computational power.
Abstract:
The present invention discloses a semiconductor device package structure with redistribution layer (RDL) and through silicon via (TSV) techniques. The package structure comprises an electronic element which includes a dielectric layer on a backside surface of the electronic element, a plurality of first conductive through vias across through the electronic element and the dielectric layer, and a plurality of conductive pads accompanying the first conductive through vias on an active surface of the electronic element; a filler material disposed adjacent to the electronic element; a first redistribution layer disposed over the dielectric layer and the filler material, and connected to the first conductive through vias; a first protective layer disposed over the active surface of the electronic element, the conductive pads, and the filler material; and a second protective layer disposed over the redistribution layer, the dielectric layer, and the filler material.