Abstract:
A contact to a source or drain region. The contact has a conductive material, but that conductive material is separated from the source or drain region by an insulator.
Abstract:
Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer, source/drain extensions a distance beneath the metal gate, and lateral undercuts in the sides of the metal gate.
Abstract:
A method of forming an isolated tri-gate semiconductor body comprises patterning a bulk substrate to form a fin structure, depositing an insulating material around the fin structure, recessing the insulating material to expose a portion of the fin structure that will be used for the tri-gate semiconductor body, depositing a nitride cap over the exposed portion of the fin structure to protect the exposed portion of the fin structure, and carrying out a thermal oxidation process to oxidize an unprotected portion of the fin structure below the nitride cap. The oxidized portion of the fin isolates the semiconductor body that is being protected by the nitride cap. The nitride cap may then be removed. The thermal oxidation process may comprise annealing the substrate at a temperature between around 900° C. and around 1100° C. for a time duration between around 0.5 hours and around 3 hours.
Abstract:
A method of forming a notched-base spacer profile for non-planar transistors includes providing a semiconductor fin having a channel region on a substrate and forming a gate electrode adjacent to sidewalls of the channel region and on a top surface of the channel region, the gate electrode having on a top surface a hard mask. a spacer layer is deposited over the gate and the fin using a enhanced chemical vapor deposition (PE-CVD) process. A multi-etch process is applied to the spacer layer to form a pair of notches on laterally opposite sides of the gate electrode, wherein each notch is located adjacent to sidewalls of the fin and on the top surface of the fin.
Abstract:
A semiconductor device and a method for forming it are described. The semoiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
Abstract:
A complementary metal oxide semiconductor integrated circuit may be formed with a PMOS device formed using a replacement metal gate and a raised source drain. The raised source drain may be formed of epitaxially deposited silicon germanium material that is doped p-type. The replacement metal gate process results in a metal gate electrode and may involve the removal of a nitride etch stop layer.
Abstract:
A metal oxide layer on a substrate is converted at least partly to a metal layer. At least part of the metal layer is covered by an oxidation resistant cover. The covered layer and underlying metal may be removed, for example, using acid.
Abstract:
Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer and reduced oxidation of a substrate beneath the high-k gate dielectric layer. An oxygen barrier, or capping, layer on the high-k gate dielectric layer and metal gate may prevent such oxidation during processes such as spacer formation and annealing of ion implanted regions.
Abstract:
In general, in one aspect, a method includes forming a semiconductor substrate having N-diffusion and P-diffusion regions. A gate stack is formed over the semiconductor substrate. A gate electrode hard mask is formed over the gate stack. The gate electrode hard mask is augmented around pass gate transistors with a spacer material. The gate stack is etched using the augmented gate electrode hard mask to form the gate electrodes. The gate electrodes around the pass gate have a greater length than other gate electrodes.
Abstract:
Methods of forming a microelectronic structure are described. Those methods may include forming a gate dielectric layer on a substrate, forming a metal gate layer on the gate dielectric layer, and then forming a polysilicon layer on the metal gate layer in situ, wherein the metal gate layer is not exposed to air.