Abstract:
A converting device with PFC and dc/dc converting functions is provided. The converting device includes a power source providing a dc voltage, an inverter having an input terminal electrically connected to the power source and an output terminal, a transformer having a primary winding electrically connected to the output terminal of the inverter and a secondary winding, a rectifier/filter circuit having an input terminal electrically connected to the secondary winding of the transformer and an output terminal, and a PFC converter coupled to the output terminal of the rectifier/filter circuit and having an input terminal receiving an ac input voltage. The converting device converts the ac input voltage into an ac output voltage when the ac input voltage is normal, and converts the dc voltage to output the ac output voltage with the cooperation of the inverter, the transformer, the rectifier/filter circuit and the PFC converter when the ac input voltage is abnormal.
Abstract:
An improved electronic ballast for providing an electrical energy to a fluorescent lamp circuit is provided. It includes a pre-heating inductor; a first resonant circuit connected to the pre-heating inductor in parallel and coupled to the fluorescent lamp circuit for pre-heating the fluorescent lamp circuit according to a first resonant frequency; a second resonant circuit coupled to the fluorescent lamp circuit for igniting the fluorescent lamp circuit according to a second resonant frequency; and a driving circuit coupled to the second resonant circuit for continuously providing the electrical energy to the first resonant circuit and the second resonant circuit respectively according to the first resonant frequency and the second resonant frequency.
Abstract:
A DC/DC converter, a power converter and a control method thereof are disclosed, where the DC/DC converter includes an output circuit, a rectangular wave generator, a resonant tank, a detection unit and a control unit. The output circuit has a load. The rectangular wave generator converts an input voltage into at least one rectangular wave. The resonant tank provides a first voltage based on the rectangular wave for the output circuit. The detection unit detects a signal related to a state of the load. When the state of the load is light-load or a no-load, the control unit controls a working frequency or a duty ratio of the rectangular wave, so that the duty ratio of the rectangular wave is within a predetermined range, in which a voltage gain of the DC/DC converter is greater than another voltage gain under the condition of 50% duty ratio.
Abstract:
The present invention provides a high-power medium-voltage drive power cell, which comprises: a rectifier module for rectifying the three-phase AC input voltage to get a DC voltage; an IGBT (Insulated Gate Bipolar Transistor) inverter bridge connected to capacitors for converting the DC voltage into an AC voltage of which the frequency, the amplitude and the phase are adjustable; a bypass module connected to the IGBT inverter bridge for providing the bypass function when the IGBT inverter bridge works in an abnormal state; and a heat pipe heat sink having a base plate on both sides of which power elements of the high-power medium-voltage drive power cell are disposed.
Abstract:
The present disclosure provides a power semiconductor switch series circuit. The power semiconductor switch series circuit includes a plurality of series modules and a system control module. Each series module has a power semiconductor switch; a drive module for driving each power semiconductor switch to be turned on or turned off; a short-circuit detection unit for outputting at least one detection signal; an equalizer circuit; a comparison module for comparing the detection signal with a predetermined threshold, and outputting a short-circuit signal when the detection signal exceeds the predetermined threshold; and a soft turn-off module for receiving the short-circuit signal and outputting a second control signal. The system control module receives the short-circuit signal and outputs a first control signal.
Abstract:
An assembled circuit is disclosed, wherein the assembled circuit comprises an inductor having a top surface, a bottom surface and side surfaces, wherein each of a plurality of conductors extends from the top surface to the bottom surface via one of the side surfaces of the inductor, wherein a circuit board is disposed over the top surface of the first electronic component and electrically connected to the plurality of conductors and a plurality of pins disposed on the bottom surface of the inductor for connecting to another circuit board.
Abstract:
An assembled circuit comprising a substrate, a coil, a first conductive segment, a second conductive segment, a first through-hole connector and a second through-hole connector is disclosed. The first conductive segment is electrically connected to one end of the first through-hole connector, the other end of the first through-hole connector is electrically connected to one end of the second through-hole connector via the first conductive segment, and the other end of the second through-hole connector is electrically connected to the second conductive segment.
Abstract:
The present invention provides a power switch series circuit and its control method. The power switch series circuit includes a plurality of series modules, a control module and a drive module. At least one series module has a power switch and a detection module, and the detection module includes a detection unit and an isolation unit, so as to detect the overvoltage and output a voltage detection signal based on the detected voltage. The control module receives the voltage detection signal and outputs the corresponding control signal. The drive module amplifies the control signal to drive each power switch to turn ON or turn OFF. The control module outputs the corresponding control signal to turn off each power switch when the overvoltage happens.
Abstract:
A rotor and a rotary electric machine containing the rotor are provided. The rotor includes a shaft, a rotor core coaxially connected to the shaft, at least one tangential magnetic steel, a first axial magnetic steel, and a second axial magnetic steel. The tangential magnetic steel is fixed in the rotor core along a tangential direction of the rotor core, and has first and second magnetic poles. The first axial magnetic steel disposed at one end surface of the rotor core is adjacent to the first pole, and has a third pole facing the rotor core, wherein the third pole and first pole repel each other. The second axial magnetic steel disposed at the end surface of the rotor core is adjacent to the second pole, and has a fourth pole facing the rotor core, wherein the fourth pole and the second pole repel each other.
Abstract:
A DC/DC converter, a power converter and a control method thereof are disclosed, where the DC/DC converter includes an output circuit, a rectangular wave generator, a resonant tank, a detection unit and a control unit. The output circuit has a load. The rectangular wave generator converts an input voltage into at least one rectangular wave. The resonant tank provides a first voltage based on the rectangular wave for the output circuit. The detection unit detects a signal related to a state of the load. When the state of the load is light-load or a no-load, the control unit controls a working frequency or a duty ratio of the rectangular wave, so that the duty ratio of the rectangular wave is within a predetermined range, in which a voltage gain of the DC/DC converter is greater than another voltage gain under the condition of 50% duty ratio.