Abstract:
Provided is a copolymer rubber, comprising a copolymer having a star-shaped block structure (SIB-PA)n-X, wherein SIB is a block comprising styrene, butadiene, and isoprene as constituent monomers; PA is a block comprising butadiene or isoprene as a constituent monomer; X is the residue of at least one coupling agent; and n=2−4. Also provided is a process for preparing the copolymer rubber and use thereof.
Abstract:
Disclosed is a process for the manufacture of a compound of formula (I) wherein Hal represents fluoro or chloro, and R1 and R2 represent, independently from one another, hydrogen or Hal; in which process a compound of formula (II) is converted to a corresponding alkyl, fluoroalkyl or aryl sulfonic acid ester, which is then reacted with an alkali metal nitrite in the presence of a suitable crown ether in a polar non-nucleophilic solvent at a temperature of −10 to 50° C. to give the compound of formula (I).
Abstract:
A process for manufacturing a compound of Formula (I) which has cis-conformation and wherein R1 represents a 1-phenyl-C1-C4alkyl or 1-naphthyl-C1-C4alkyl group, wherein the phenyl or naphthyl moiety of R1 is unsubstituted or substituted with one or more C1-C4alkoxy groups and the carbon atoms in 2-, 3-, and/or 4-position of the alkyl part of R1 are, independently of the phenyl or naphthyl moiety of R1 and independently of one another, unsubstituted or substituted with C1-C4alkoxy and/or silyloxy or, preferably, are unsubstituted or substituted with one C1-C4alkoxy group and/or silyloxy group per carbon atom, and R2 represents a C1-C6alkyl group or an unsubstituted or substituted benzyl group, in which process a compound of Formula (II) wherein R3 represents a C1-C6alkyl group or an unsubstituted or substituted benzyl group, and R1 and R2 have the same meaning as in formula (I); is treated with a base at a temperature of 0° C. or less in a liquid aprotic solvent for a time period sufficient to obtain the compound of formula (I).
Abstract:
Disclosed is a process for the manufacture of a compound of formula (I) wherein Hal represents fluoro or chloro, and R1 and R2 represent, independently from one another, hydrogen or Hal; in which process a compound of formula (II) is converted to a corresponding alkyl, fluoroalkyl or aryl sulfonic acid ester, which is then reacted with an alkali metal nitrite in the presence of a suitable crown ether in a polar non-nucleophilic solvent at a temperature of −10 to 50° C. to give the compound of formula (I).
Abstract:
Disclosed is a process for the manufacture of a compound of formula (I) wherein Hal represents fluoro or chloro, and R1 and R2 represent, independently from one another, hydrogen or Hal; in which process a compound of formula (II) is converted to a corresponding alkyl, fluoroalkyl or aryl sulfonic acid ester, which is then reacted with an alkali metal nitrite in the presence of a suitable crown ether in a polar non-nucleophilic solvent at a temperature of −10 to 50° C. to give the compound of formula (I).
Abstract:
An ion energy analyzer is described for use in diagnosing the ion energy distribution (IED) of ions incident on a radio frequency (RF) biased substrate immersed in plasma. The ion energy analyzer comprises an entrance grid exposed to the plasma, an electron rejection grid disposed proximate to the entrance grid, and an ion current collector disposed proximate to the electron rejection grid. The ion current collector is coupled to an ion selection voltage source configured to positively bias the ion current collector by an ion selection voltage, and the electron rejection grid is coupled to an electron rejection voltage source configured to negatively bias the electron rejection grid by an electron rejection voltage. Furthermore, an ion current meter is coupled to the ion current collector to measure the ion current.
Abstract:
An ion energy analyzer is described for use in diagnosing the ion energy distribution (IED) of ions incident on a radio frequency (RF) biased substrate immersed in plasma. The ion energy analyzer comprises an entrance grid exposed to the plasma, an electron rejection grid disposed proximate to the entrance grid, and an ion current collector disposed proximate to the electron rejection grid. The ion current collector is coupled to an ion selection voltage source configured to positively bias the ion current collector by an ion selection voltage, and the electron rejection grid is coupled to an electron rejection voltage source configured to negatively bias the electron rejection grid by an electron rejection voltage. Furthermore, an ion current meter is coupled to the ion current collector to measure the ion current.
Abstract:
The current invention relates to an improved microplate. The microplate is characterized by modified quadrilateral edges, which bring less artificially induced inaccuracies in peripheral wells, especially in corner wells. Preferably, the microplate possesses a bottom that is elongated to cover the non-experimental slots. The microplate might further comprise sham wells.
Abstract:
A computer implemented method, apparatus, and computer usable program code for generating code for an integrated data system. A mixed data flow is received. The mixed data flow contains mixed data flow operators, which are associated with multiple runtime environments. A graph is generated containing logical operators based on the mixed data flow in response to receiving the mixed data flow. The logical operators are independent of the plurality of runtime environments. The graph is converted to a model. The logical operators are converted to model operators associated with the multiple runtime environments. The model operators allow for analysis of operations for the mixed data flow. The model is converted into an execution plan graph. The execution plan graph is executable on different runtime environments.
Abstract:
A system and method for data model and content migration in content management applications is disclosed that facilitates data migration by utilizing a markup-language format to preserve dependency and enable compatibility among various platforms, applications, devices, etc. The invention generally includes retrieving a plurality of objects, determining a dependency of the plurality of objects, extracting object definitions from the objects, forming a markup-language user document with the extracted object definitions utilizing the determined object dependency, and exporting the markup-language user document.