Abstract:
An array test method of an organic light emitting diode (OLED) display substrate is provided. The OLED display substrate includes a plurality of pixel circuits. Each pixel circuit includes an anode, a first transistor for transmitting a data signal that controls an amount of light emission of an OLED according to a scan signal, a driving transistor for receiving the data signal, generating a driving current corresponding to the data signal, and transmitting the driving current to the OLED, and a second transistor for diode-connecting a gate electrode and a drain electrode of the driving transistor. The array test method includes: injecting electrons or holes that generate an initialization voltage into the anode by turning on the second transistor; radiating electron beams at the anode; and determining whether or not the driving transistor performs normal operation from an amount of secondary electrons emitted from the anode
Abstract:
Disclosed is a method of manufacturing an organic light-emitting display device capable of improving efficiency of a laser generator used for crystallization of amorphous silicon. The method crystallizes amorphous silicon selectively to provide an organic light-emitting display device that includes channel area of a pixel contains polycrystalline silicon and storage area of the pixel contains amorphous silicon.
Abstract:
A laser irradiation apparatus provides a laser beam along a scan direction to a semiconductor layer including a plurality of pixel areas. The laser irradiation apparatus includes at least one laser mask including a plurality of slit groups respectively facing portions of the plurality of pixel areas and a laser generator generating the laser beam that pass through the plurality of slit groups of the at least one laser mask.
Abstract:
An organic light emitting diode display device and a method of manufacturing thereof, the device including a substrate, the substrate including a pixel part and a circuit part; a first semiconductor layer and a second semiconductor layer on the pixel part of the substrate; a gate insulating layer on an entire surface of the substrate; gate electrodes on the gate insulating layer, the gate electrodes corresponding to the first semiconductor layer and the second semiconductor layer, respectively; source/drain electrodes insulated from the gate electrodes, the source/drain electrodes being connected to the first and second semiconductor layers, respectively; a first electrode connected to the source/drain electrodes of the first semiconductor layer; an organic layer on the first electrode; a second layer on the organic layer; and a metal catalyst layer under the first semiconductor layer.
Abstract:
In an organic light emitting diode (OLED) display and a manufacturing method thereof, the OLED display includes a substrate main body; an insulation layer pattern formed on the substrate main body, and including a first thickness layer and a second thickness layer thinner than the first thickness layer; a metal catalyst that is scattered on the first thickness layer of the insulation layer pattern; and a polycrystalline semiconductor layer formed on the insulation layer pattern, and divided into a first crystal area corresponding to the first thickness layer and to a portion of the second thickness layer adjacent to the first thickness layer and a second crystal area corresponding to the remaining part of the second thickness layer. The first crystal area of the polycrystalline semiconductor layer is crystallized through the metal catalyst, and the second crystal area of the polycrystalline semiconductor layer is solid phase crystallized.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same are disclosed. The OLED display device includes a plurality of scan lines, a plurality of data lines, and a plurality of pixels disposed in a region in which the scan lines cross the data lines, where each pixel of the plurality of pixels includes: a switching transistor including a first gate electrode, a first semiconductor layer disposed over the first gate electrode, a first gate insulating layer interposed between the first gate electrode and the first semiconductor layer, a first source electrode and a first drain electrode, a driving transistor including a second semiconductor layer, a second gate electrode disposed over the second semiconductor layer, a second gate insulating layer interposed between the second gate electrode and the second semiconductor layer, a second source electrode and a second drain electrode, and an organic light emitting diode electrically connected with the second source and second drain electrodes of the driving transistor, where the first and second semiconductor layers are formed of the same material, and from the same processing.
Abstract:
A data processing apparatus and method are provided. A first pie chart graphic is generated from first node data of a first node among hierarchical data and is displayed on a display. A processor analyzes an input to determine second node data of a second node that is an access target among the hierarchical data. A second pie chart graphic is generated from the second node data.
Abstract:
Provided are an apparatus and method of grouping and displaying messages. The apparatus verifies a grouping condition corresponding to messages, generates group message boxes obtained by grouping the messages based on the grouping condition, and displays the group message boxes. The group message boxes are connected with a reference axis, and the reference axis is used to arrange the group message boxes according to the grouping condition.
Abstract:
An image display device includes a driving unit to provide first and second image signals and first and second control signals to display images, a first display unit to display first images in response to the first image signal and the first control signal from the driving unit, a second display unit to display secondary images in response to the second image signal and the second control signal from the driving unit, first data-transfer lines to transfer the second image signal from the driving unit to the second display unit, second data-transfer lines to transfer the second control signal from the driving unit to the second display unit, and a flexible printed circuit board connected between the first and second display units to provide electrical connection between the driving unit and the second display unit.
Abstract:
A reflective type or transmissive and reflective type LCD device enhances reflectivity of light in a plurality of directions. The LCD device includes a first substrate having a plurality of pixels, TFTs formed on the first substrate, an insulating layer, a reflective electrode, a second substrate opposite to the first substrate, and liquid crystal layer interposed between the first and second substrates. The reflective electrode includes a plurality of embossing members arranged repeatedly thereon to form an embossing pattern. The embossing members have inclined faces inclined asymmetrically in a plurality of directions, for example in a first, second, third and fourth directions. A viewing angle of the LCD device may be broaden in various directions regardless of an incident angle of light incident into the LCD device, and the reflectivity of the LCD device may be increased, thereby enhancing luminance of the LCD device.