Abstract:
A data processing system includes an error checking and correction (ECC) encoding circuit, an integrated circuit memory and a code rate control circuit. The ECC encoding circuit is configured to selectively apply a plurality of unique ECC code rates to write data received by the data processing system during an operation to convert the write data into encoded data, in response to a code rate selection signal. The integrated circuit memory includes a plurality of storage regions therein. These storage regions are configured to receive respective portions of the encoded data from the ECC encoding circuit. The code rate control circuit is configured to generate the code rate selection signal. This code rate selection signal has a value that specifies the corresponding ECC code rate to be applied to respective portions of the write data.
Abstract:
Provided are memory devices and memory programming methods. A memory device may include: a multi-bit cell array that includes a plurality of memory cells; a controller that extracts state information of each of the memory cells, divides the plurality of memory cells into a first group and a second group, assigns a first verify voltage to memory cells of the first group and assigns a second verify voltage to memory cells of the second group; and a programming unit that changes a threshold voltage of each memory cell of the first group until the threshold voltage of each memory cell of the first group is greater than or equal to the first verify voltage, and changes a threshold voltage of each memory cell of the second group until the threshold voltage of each memory cell of the second group is greater than or equal to the second verify voltage.
Abstract:
Encoding/decoding memory devices and methods thereof may be provided. A memory device according to example embodiments may include a memory cell array and a processor including at least one of a decoder and an encoder. The processor may be configured to adjust a redundant information rate of each channel, where each of the channels is a path of the memory cell array from which data is at least one of stored and read. The redundant information rate may be adjusted by generating at least one codeword based on information from a previous codeword. Therefore, example embodiments may reduce an error rate when data is read from and written to the memory device.
Abstract:
Memory devices and/or encoding/decoding methods are provided. A memory device may include: a memory cell array; an internal decoder configured to apply, to a first codeword read from the memory cell array, a first decoding scheme selected based on a characteristic of a first channel in which the first codeword is read to perform error control codes (ECC) decoding of the first codeword, and apply, to a second codeword read from the memory cell array, a second decoding scheme selected based on a characteristic of a second channel in which the second codeword is read to perform the ECC decoding of the second codeword; and an external decoder configured to apply an external decoding scheme to the ECC-decoded first codeword and the ECC-decoded second codeword to perform the ECC decoding of the first codeword and the second codeword.
Abstract:
A method may be provided to detect and correct data errors in a data system where a data message has been encoded with outer parity bits based on the data message using an outer encoding technique to provide an outer codeword and with inner parity bits based on the outer codeword using an inner encoding technique different than the outer encoding technique to provide an inner codeword. The method may include using the inner parity bits and an inner decoding technique corresponding to the inner encoding technique to perform inner decoding of the inner codeword. Responsive to performing inner decoding of the inner codeword without error, the data message may be extracted from a result of inner decoding the inner codeword without using the outer parity bits to decode the result of inner decoding the inner codeword. Related systems are also discussed.
Abstract:
A method of operating a memory controller includes reading data from a first block of a memory device; detecting degraded pages from a plurality of pages of the first block and counting a number of the degraded pages in the first block; and recharging or reclaiming the first block, which includes the degraded pages, based on the counted number of the degraded pages.
Abstract:
A method of encoding multi-bit level data includes: determining a range of an error pattern generated according to a transmission symbol, encoding an M-bit level of a P-bit level corresponding to the transmission symbol based on the range of the error pattern, and excluding encoding of a P-M bit level of the P-bit level. The variable P is a natural number of a value at least two, and the variable M is a natural number less than P.
Abstract:
Provided is a method for operating a nonvolatile memory device. In the method, read data is read by means of a read level and logic values for erasure-decoding the read data are set. The bits of the read data corresponding to the range of the set logic values is set as erasure bits, and an erasure decoding operation is performed.
Abstract:
Memory systems and related defective block management methods are provided. Methods for managing a defective block in a memory device include allocating a defective block when a memory block satisfies a defective block condition. The allocated defective block is cancelled when the allocated defective block satisfies a defective block cancellation condition.
Abstract:
A nonvolatile memory device using interleaving technology is provided. The nonvolatile memory device includes a first controller configured to allocate one of 2N threshold voltage states to N-bit data where N is 2 or a natural number greater than 2, a second controller configured to set a difference between adjacent threshold voltage states among the 2N threshold voltage states so that the difference increases as a threshold voltage increases, and a programming unit configured to form a threshold voltage distribution state corresponding to the allocated threshold voltage state and to program the N-bit data to a multi-level cell. The second controller controls the difference between the adjacent threshold voltage states to equalize the number of read errors for all intersections among the 2N threshold voltage states at the end of life.