Abstract:
Provided are a defect inspecting method and a defect inspecting apparatus, wherein defect detecting sensitivity is improved and also haze measurement is performed using polarization detection, while suppressing damages to samples. The defect inspecting apparatus is provided with a light source which oscillates to a sample a laser beam having a wavelength band wherein a small energy is absorbed, and two independent detecting optical systems, i.e., a defect detecting optical system which detects defect scattered light generated by a defect, by radiating the laser beams oscillated by the light source, and a haze detecting optical system which detects roughness scattered light generated due to roughness of the wafer surface. Polarization detection is independently performed with respect to the scattered light detected by the two detecting optical systems, and based on the two different detection signals, defect determination and haze measurement are performed.
Abstract:
A defect inspection apparatus and method includes utilizing an irradiation optical system that focuses a beam flux emitted from a laser light source and formed into a slit-shaped beam so as to irradiate the beam onto the surface of the substrate to be inspected, utilizing a detection optical system that detects light from the substrate that has been irradiated with the slit-shaped beam, and utilizing a signal processor that processes a signal output from the detection optical system. The irradiation optical system includes a cylindrical lens for focusing the beam that has been emitted from the laser light source onto the substrate to be inspected, as the slit-shaped beam, wherein the cylindrical lens is disposed so as to obtain a distance between an incidence surface or emitting surface thereof and the slit-shaped beam upon the substrate to be inspected to be equal to a focal distance of the cylindrical lens.
Abstract:
A defect inspection apparatus is capable of inspecting an extremely small defect present on the top and edge surfaces of a sample such as a semiconductor substrate or a thin film substrate with high sensitivity and at high speed. The defect inspection apparatus has an illumination optical system, a plurality of detection optical units and a signal processor. One or more of the detection optical units receives either light diffracted from an edge portion of the sample or light diffracted from an edge grip holding the sample. The one or more of the detection optical units shields the diffracted light received by the detection optical unit based on a signal obtained by monitoring an intensity of the diffracted light received by the detection optical unit in order to inspect a sample portion located near the edge portion and a sample portion located near the edge grip.
Abstract:
An apparatus for inspecting a specimen includes a first illumination unit having a laser light source and a first optical component for illuminating a specimen on which patterns are formed with a laser from a first elevation angle direction, a second illuminating unit having a light source and a second optical component for illuminating the specimen from a second elevation angle direction which is greater than the first elevation angle, a first detection optical unit which detects light from the specimen illuminated by the first illumination unit, a second detection optical unit which detects light from the specimen illuminated by the second illumination unit, and a signal processing unit which processes signals output from the first detector to detect defects in a first area on the specimen and processes signals output from the second detector to detect defects in a second area on the specimen.
Abstract:
A defect inspection apparatus includes a movable stage for mounting a substrate having circuit patterns as an object of inspection, an irradiation optical system which irradiates a slit-shaped light beam from an oblique direction to the circuit patterns of the substrate, a detection optical system which includes an image sensor for receiving reflected/scattered light from the substrate by irradiation of the slit-shaped light beam and converting the received light into a signal, and an image processor which processes the signal. The irradiation optical system includes a cylindrical lens and a coherency reduction optical system, which receives the light beam and emits a plurality of slit-shaped light sub-beams which are spatially reduced in coherency in a light-converging direction of the cylindrical lens. The cylindrical lens focuses the plurality of slit-shaped light sub-beams into the slit-shaped light beam irradiated to the surface of the substrate.
Abstract:
A pattern inspection apparatus is provided to compare images of regions, corresponding to each other, of patterns that are formed so as to be identical and judge that non-coincident portions in the images are defects. The pattern inspection apparatus is equipped with an image comparing section which plots individual pixels of an inspection subject image in a feature space and detects excessively deviated points in the feature space as defects. Defects can be detected correctly even when the same patterns in images have a brightness difference due to a difference in the thickness of a film formed on a wafer.
Abstract:
A method for inspecting a defect of a surface of a sample, includes irradiating a laser beam on the sample surface a plurality of times so that at least part of an illumination field of the laser beam on the sample surface illuminates a first area of the sample surface each of the plurality of times, detecting a plurality of scattered light rays from the first area caused by the plurality of times of irradiation, correcting errors of detection timings for the plurality of scattered light rays detected in the detection step, and determining a defect on the sample surface based on the plurality of scattered light rays in accordance with the correcting errors of detection timings.
Abstract:
Scattered light that originates from the surface roughness of silicon or other metallic films is distributed more strongly at positions closer to the starting position of the scattering. Of all scattered-light detection signals obtained during multi-directional detection, therefore, only a detection signal of forward scattered light can be used to detect micro-defects, and only a detection signal of backward scattered light can be used to detect the surface roughness very accurately.
Abstract:
To inspect a substrate such as a semiconductor substrate for surface roughness at high precision.The surface roughness of the substrate is measured in each frequency band of the surface roughness by applying a light to the substrate surface and detecting a scattered light or reflected light at a plurality of azimuth or elevation angles.
Abstract:
A method for inspecting a defect of a surface of a sample includes irradiating a laser beam on the sample surface a plurality of times so that at least part of an illumination field of the laser beam on the sample surface illuminates a first area of the sample surface each of the plurality of times, detecting a plurality of scattered light rays from the first area caused by the plurality of times of irradiations, correcting errors of detection timings for the plurality of detected scattered light rays, correcting at least one of adding and averaging the plurality of scattered light rays, determining a defect on the sample surface based on a calculation result in accordance with the at least one of the adding and averaging.