Abstract:
A radio frequency (RF) sensing device in an assembly is adapted to wirelessly communicate with a remote transceiver. The sensing device includes a substrate; an antenna disposed on the substrate; an electronic circuit disposed on the substrate and electrically coupled to the antenna; a heating element electrically coupled to the electronic circuit for heating a target area; and a sensing element thermally coupled to the heating element for sensing a temperature of the heating element. The RF sensing device is configured to wirelessly receive a power and provides the power to the heating element.
Abstract:
Systems and methods for directly sensing, measuring, or monitoring the temperature of an electrical conductor (31) of a power cable (10), are provided. A surface acoustic wave (SAW) temperature sensor (20) is used that includes a substrate (20S) with a transducer (20T) disposed thereon. The transducer (20T) conducts conversion between an electromagnetic signal and a SAW signal that propagates on the substrate (20S). At least a portion of the substrate (20S) is disposed in thermal contact with the electrical conductor (31) such that the SAW signal varies with the temperature of the electrical conductor (31).
Abstract:
A fluid treatment cartridge includes a housing having a fluid inlet and a fluid outlet with a treatment media contained within the housing. The fluid treatment cartridge includes a detection member comprising at least one closed electrically conductive loop having at least two spatially separate sections. Each of the sections generates a magnetic response when at least one section is electromagnetically excited. The magnetic response of each section is predetermined by the physical shape of the section and comprises at least one of a predetermined magnetic phase response and a predetermined magnetic amplitude response. The predetermined magnetic response of at least one other section of the closed electrically conductive loop corresponds to at least a one digit code.
Abstract:
Devices that provide for interaction with an image are disclosed. More specifically, devices that provide for tool-free interaction with a projected image are disclosed.
Abstract:
According to one embodiment, a method can comprise: providing a tool that has a first portion that comprises a first material and a second portion that comprises a second material, wherein the second material differs from the first material and the tool is subject to a magnetic field, and wherein the first material and the second material are provided such that the magnetic field is relatively stronger at and adjacent the first portion relative to the magnetic field at and adjacent the second portion; positioning a surface adjacent to the tool so as to be subject to the magnetic field; and disposing magnetizable abrasive particles on the surface, wherein the magnetizable abrasive particles are attracted to an area on the surface adjacent the first portion where the magnetic field is relatively stronger so as to provide for at least one of a desired orientation, placement and alignment of a majority of the magnetizable abrasive particles on the surface.
Abstract:
According to one embodiment, a method of making an abrasive layer on a backing is disclosed. The method can comprise: providing a distribution tool having a dispensing surface with cavities, providing a backing having a first major surface, supplying magnetizable abrasive particles to the dispensing surface such that at least one of the magnetizable abrasive particles is disposed in a respective one of the cavities, applying a magnetic field to retain the magnetizable abrasive particles disposed in the cavities, aligning the backing with the dispensing surface with the first major surface facing the dispensing surface, transferring the magnetizable abrasive particles from the cavities to the backing, sequent to or simultaneous with transferring the abrasive particles, removing or changing a magnetic field so the magnetic field no longer retains the magnetizable abrasive particles in the cavities.
Abstract:
In some examples, a system includes an article of personal protective equipment (PPE) having at least one sensor configured to generate a stream of usage data; and an analytical stream processing component comprising: a communication component that receives the stream of usage data; a memory configured to store at least a portion of the stream of usage data and at least one model for detecting a safety event signature, wherein the at least one model is trained based as least in part on a set of usage data generated by one or more other articles of PPE of a same type as the article of PPE; and one or more computer processors configured to: detect the safety event signature in the stream of usage data based on processing the stream of usage data with the model, and generate an output in response to detecting the safety event signature.
Abstract:
Techniques are described for forming a gradient index (GRIN) lens for propagating an electromagnetic wave comprising receiving, by a manufacturing device having one or more processors, a model comprising data specifying a plurality of layers, wherein at least one layer of the plurality of layers comprises an arrangement of one or more volume elements comprising a first dielectric material and a second dielectric material, wherein the at least one layer of the plurality of layers has a dielectric profile that is made up of a plurality of different effective dielectric constants of the volume elements in the layer, and generating, with the manufacturing device by an additive manufacturing process, the GRIN lens based on the model.
Abstract:
A method of making a coated abrasive article includes at least four steps. In step a), a web is provided comprising a backing having a make layer precursor disposed thereon. The web moves along a web path in a downweb direction, and the web has a crossweb direction that is perpendicular to the downweb direction. The make layer precursor comprises a first curable binder precursor; In step b) an applied magnetic field is provided. In step c), a mixture of magnetizable non-magnetizable particles is passed through the applied magnetic field and onto the make layer precursor such that the magnetizable and non-magnetizable particles are predominantly deposited onto the web in a drop zone according to a predetermined order. At least one of the magnetizable particles or the non-magnetizable particles comprises abrasive particles. In step d), the make layer precursor is at least partially cured to provide a make layer.
Abstract:
The disclosure describes systems (2) of navigating a hazardous environment (8). The system includes personal protective equipment (PPE) (13) and computing device(s) (32) configured to process sensor data from the PPE (13), generate pose data of an agent (10) based on the processed sensor data, and track the pose data as the agent (10) moves through the hazardous environment (8). The PPE (13) may include an inertial measurement device to generate inertial data and a radar device to generate radar data for detecting a presence or arrangement of objects in a visually obscured environment (8). The PPE (13) may include a thermal image capture device to generate thermal image data for detecting and classifying thermal features of the hazardous environment (8). The PPE (13) may include one or more sensors to detect a fiducial marker (21) in a visually obscured environment (8) for identifying features in the visually obscured environment (8). In these ways, the systems (2) may more safely navigate the agent (10) through the hazardous environment (8).