摘要:
A system and methodology are disclosed for monitoring and controlling a semiconductor fabrication process. Measurements are taken in accordance with scatterometry based techniques of repeating in circuit structures that evolve on a wafer as the wafer undergoes the fabrication process. The measurements can be employed to generate feed forward and/or feedback control data that can utilized to selectively adjust one or more fabrication components and/or operating parameters associated therewith to adapt the fabrication process. Additionally, the measurements can be employed in determining whether to discard the wafer or portions thereof based on a cost benefit analysis, for example. Directly measuring in circuit structures mitigates sacrificing valuable chip real estate as test grating structures may not need to be formed within the wafer, and also facilitates control over the elements that actually affect resulting chip performance.
摘要:
A system comprised of a plurality of fabs that are operatively coupled and share data from a common framework for correlating production. The fabs can be coupled via Internet, cellular, optical, landline, microwave and satellite communication means and the like. Data can be transferred to and/or received from a central, integrated correlating entity or from several distributed correlating entities. The fabs send and receive correlating data that relates to production information such as tolerances, critical dimensions, geometry and the like. The correlating entity(s) has the capability to increase production by performing probabilistic computations on the received correlating data and utilizing the resulting information to maintain correlating parameters at remote locations. The computations performed can include such calculations as Bayesian inferencing and the like. The system inherently precludes the necessity for physically transporting parametric test entities between different fab or tooling locations.
摘要:
The present invention relates to inspection methods and systems utilized to provide a best means for inspection of a wafer. The methods and systems include wafer-to-reticle alignment, layer-to-layer alignment and wafer surface feature inspection. The wafer-to-reticle alignment is improved by the addition of diagonal lines to existing alignment marks to decrease the intersection size and corresponding area that a desired point can reside. Layer-to-layer alignment is improved in a similar manner by the addition of oblique and/or non-linear line segments to existing overlay targets. Also, providing for wafer surface inspection in a multitude of desired diagonal axes allows for more accurate feature measurement.
摘要:
Disclosed are methods for processing a low k material involving providing a low k material layer comprising one or more low k polymer materials and one or more high modulus fillers on a semiconductor substrate, and chemical mechanical polishing the low k material layer so as to remove a portion of the low k material layer from the semiconductor substrate without substantially damaging unremoved portions of the low k material layer. In this connection, low k material layers for a semiconductor structure containing one or more low k polymer materials and one or more high modulus fillers are disclosed, as well as methods of making the low k material layers.
摘要:
The present invention relates to systems and methods for mitigating pattern collapse in ultra-thin resist processing. In one embodiment, the present invention relates to etching extremely fine patterns into a hardmask immediately after developing an ultra-thin resist, wherein the resist is not dried.
摘要:
Disclosed are methods of processing a semiconductor structure, involving the steps of depositing a light-degradable surface coupling agent on a semiconductor substrate; depositing a resist over the light-degradable surface coupling agent; irradiating portions of the resist, wherein the light-degradable surface coupling agent under the irradiated portions of the resist at least partially decomposes; and developing the resist.
摘要:
A system and methodology is provided for monitoring and controlling static charge during wafer and mask fabrication. The static charge on a target device is monitored. If the static charge becomes too high, corrective actions are taken to reduce the static charge. An antistatic solution is dispensed on the target device. The system and methodology provided reduce damage resulting from electrostatic discharge during fabrication. The system and methodology also reduce delays during fabrication by automatically controlling static charge without the need for manual intervention.
摘要:
One aspect of the present invention relates to a system and method of monitoring for defects on a wafer before and after forming a photoresist layer on the wafer. The system includes a device fabrication system comprising one or more wafer processing system components for producing a device; a defect metrology system integrated within and on track with the fabrication system operative to inspect the wafer for defects before it proceeds to photoresist processing; and a wafer cleaning system for reducing an amount of defects detected on the front and/or back side of the wafer. If the amount of defects have been sufficiently reduced, the front side of the wafer may be coated with a photoresist. Subsequently, the back side of the wafer may be inspected and cleaned while protecting the front side from damage. Cleaning of the wafer may be performed with a thermal shock treatment, for example.
摘要:
One aspect of the present invention relates to a system and method for examining a wafer for delamination in real time while polishing the wafer. The system comprises a polishing system programmed to planarize one or more film layers formed on at least a portion of a semiconductor wafer surface; a real-time metrology system coupled to the polishing system such that the metrology system examines the layers as they are planarized; and one or more delamination sensors, wherein at least a portion of each sensor is integrated into the polishing system in order to provide data to the metrology system and wherein the sensor comprises at least one optical element to detect delamination during polishing. The method involves polishing at least a portion of an uppermost film layer and examining at least a portion of a layer underlying the uppermost film layer for delamination as the uppermost layer is being polished.
摘要:
One aspect of the invention relates to a metal fill process and systems therefor involving providing a standard calibration wafer having a plurality of fill features of known dimensions in a metalization tool; depositing a metal material over the standard calibration wafer; monitoring the deposition of metal material using a sensor system, the sensor system operable to measure one or more fill process parameters and to generate fill process data; controlling the deposition of metal material to minimize void formation using a control system wherein the control system receives fill process data from the sensor system and analyzes the fill process data to generate a feed-forward control data operative to control the metalization tool; and depositing metal material over a production wafer in the metalization tool using the fill process data generated by the sensor system and the control system. The invention further relates to tool characterization processes and systems therefor.