Abstract:
The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
Abstract:
A method for channel equalization of received data includes steps of: receiving the received data in a received data packet; calculating filter setting coefficients for an input filter and calculating equalizer setting coefficients for an equalizer; setting the input filter using the filter setting coefficients and setting the equalizer using the equalizer setting coefficients; equalizing the received data using the input filter and using the equalizer; determining channel parameters for the transmission channel from the received data Xk; storing the channel parameters in a data field; and performing the step of calculating the filter setting coefficients for the input filter and calculating the equalizer setting coefficients for the equalizer by performing a GIVENS rotation of the data field.
Abstract:
The present invention relates to the field of bioengineering. It provides a Candida antarctica lipase B mutant and its application. The mutant enzyme overcomes the limit of the parent enzyme that can exhibit high enantioselectivity towards (R)-3-TBDMSO glutaric acid methyl monoester only at temperatures below 5° C. The mutant enzyme successfully increased R-ee value at 5-70° C. The mutant D223V/A281S exhibits high R-ee value (>99%), high conversion rate (80%), and high space-time yield (107.54 g L−1 d−1). The present invention lays a foundation for industrial production of (R)-3-TBDMSO glutaric acid methyl monoester using a biosynthesis approach and provide insights into conformational dynamics-based enzyme design.
Abstract:
The present application provides a screen method for intaglio printing, comprising: dividing multiple classes of regions according to a brightness range; and generating screen dots with various screen patterns for the grouped classes of regions. The present application also provides a screen device for intaglio printing, comprising: a dividing module configured to group multiple classes of regions according to the brightness range; and a generating module configured to generate screen dots with various screen patterns for the grouped classes of regions. Since multiple kinds of screen patterns are applied in the technical solutions in present application, the problem, i.e., water ripple will occur in the prior art, may be addressed, so as to improve the quality of printing.
Abstract:
The invention provides apparatuses and techniques for controlling flow between a manifold and two or more connecting microchannels. Flow between plural connecting microchannels, that share a common manifold, can be made more uniform by the use of flow straighteners and distributors that equalize flow in connecting channels. Alternatively, flow can be made more uniform by sections of narrowed diameter within the channels. Methods of making apparatus and methods of conducting unit operations in connecting channels are also described.
Abstract:
A multigate structure which comprises a semiconductor substrate; an ultra-thin silicon or carbon bodies of less than 20 nanometers thick located on the substrate; an electrolessly deposited metallic layer selectively located on the side surfaces and top surfaces of the ultra-thin silicon or carbon bodies and selectively located on top of the multigate structures to make electrical contact with the ultra-thin silicon or carbon bodies and to minimize parasitic resistance, and wherein the ultra-thin silicon or carbon bodies and metallic layer located thereon form source and drain regions is provided along with a process to fabricate the structure.
Abstract:
An amplitude modulation screening method is provided. The method comprises a step of utilizing regular hexagon screen dots to form a threshold matrix for amplitude screening. In embodiments of the present application, an amplitude modulation screening apparatus is also provided. The apparatus may comprise a matrix module configured to constitute a threshold matrix for amplitude screening using regular hexagon screen dots. Due to the threshold matrix formed with regular hexagon screen dots, the method and apparatus of the present application resolve the problem of the screen dots in the prior art, and improve the printing quality.
Abstract:
A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
Abstract:
Disclosed is a method and system for document printing management and control and source tracking. A printing management service program runs at a server end. A printing monitoring service program runs at a client end. The printing management service program saves client end information, monitors and manages a client end computer, sets a printing management policy, and delivers operation instructions to the client end. The printing monitoring service program collects the client end information, sends the client end information to the server end, and executes the operation instruction.
Abstract:
A complementary metal-oxide-semiconductor (CMOS) device and methods of formation thereof are disclosed. In a particular embodiment, a CMOS device includes a silicon substrate, a dielectric insulator material on the silicon substrate, and an extension layer on the dielectric insulator material. The CMOS device further includes a gate in contact with a channel and in contact with an extension region. The CMOS device also includes a source in contact with the extension region and a drain in contact with the extension region. The extension region includes a first region in contact with the source and the gate and includes a second region in contact with the drain and the gate.