Abstract:
A method of turbulator fabrication is provided and includes additively disposing an elongate flexible member in tension onto a liner body, dispensing braze paste at an elongate flexible member-liner body interface and conducting a brazing process with respect to the braze paste to attach the elongate flexible member to the liner body.
Abstract:
Aft frame assemblies for a gas turbine transition pieces include a body comprising an exterior surface and a plurality of interior surfaces, one or more exterior cooling holes disposed on the exterior surface of the body for capturing compressor discharge air outside of the transition piece, and a supplemental component bonded to at least one of the plurality of interior surfaces of the body. At least one cooling channel is at least partially defined by the supplemental component and the interior surface that the supplemental component is bonded to, wherein the at least one cooling channel fluidly connects at least one of the one or more exterior cooling holes to one or more interior cooling outlets that discharge the compressor discharge air captured from the at least one of the one or more exterior cooling holes.
Abstract:
A brazing tape or preform includes a layer of a brazing material, and a plurality of ceramic members affixed to the layer. The plurality of ceramic members are configured to be removable by a ceramic solvent. The plurality of ceramic members are comprised of a plurality of water-soluble ceramic members. The ceramic solvent used to remove the ceramic members is water. The brazing material is selected from the group comprising, nickel, nickel alloys, cobalt, cobalt alloys, iron, iron alloys, and combinations thereof. The ceramic members comprise, about 60% to about 70% by weight of alumina (Al2O3), about 15% to about 25% by weight of zircon (ZrSiO4) flour, about 5% to about 15% by weight of sodium hydrogen phosphate (Na2HPO4), and about 5% by weight of sugar. The brazing tape may be configured as a flexible tape, and the brazing preform may be configured as a pre-sintered preform.
Abstract:
A ternary magnetic braze alloy and method for applying the braze alloy in areas having limited access. The magnetic braze alloy is a nickel-based braze alloy from the perminvar region of the Ni, Fe, Co phase diagram. The braze alloy includes, by weight percent 8-45% Fe, 0-78% Co, 2.0-4.0% of an element selected from the group consisting of B and Si and combinations thereof, and the balance Ni. The nickel-based braze alloy is characterized by a brazing temperature in the range of 1850-2100° F. The nickel-based braze alloy is magnetic below its Curie temperature.
Abstract:
Various embodiments of the disclosure include a component, methods of forming components, and methods of cooling components. In some embodiments, a method includes: forming a microchannel in a component; providing a marker member in the microchannel; and forming a thermal barrier coating (TBC) over the microchannel and a portion of the marker member to substantially seal the microchannel, wherein a portion of the marker member extends beyond an outer surface of the TBC after the forming of the TBC.
Abstract:
A weld filler metal for a superalloy for welding is disclosed. The weld filler metal includes a preformed article that contains a first material with a melting point of approximately 2300 to 2500° F., and a second material with a melting point of approximately 1800 to 2200° F., wherein a ratio of the first material and the second material is variable. Related processes and articles are also disclosed.
Abstract:
A metal chemistry includes an amount of chromium weight of between about 9.0% and about 16% by weight, an amount of cobalt of between about 7.0% and about 14% by weight, an amount of molybdenum of between about 10% and about 20% by weight, an amount of iron of between about 1.0% and about 5.0% by weight, an amount of aluminum of between about 0.05% and about 0.75% by weight, an amount of titanium of between about 0.5% and about 2.0% by weight, an amount of manganese not to exceed about 0.8% by weight, an amount of carbon of between about 0.02% and about 0.10% by weight, an amount of a titanium+aluminum alloy of between about 0.55% and about 2.75% by weight, and an amount of nickel.
Abstract:
Turbine buckets include a pressure side, a suction side opposite the pressure side, and a bucket squealer tip attached to the pressure side and the suction side. The bucket squealer tip includes a plurality of high hot hardness shroud-cutting deposits deposited on its exterior surface that have a hardness of at least about 1100 kg mm−2 and a melting temperature of at least about 1500° C.
Abstract translation:涡轮铲斗包括压力侧,与压力侧相对的吸入侧,以及附接到压力侧和吸力侧的铲斗尖端尖端。 铲斗尖尖包括沉积在其外表面上的多个高热硬度护罩切割沉积物,其具有至少约1100kg / mm 2的硬度和至少约1500℃的熔化温度。
Abstract:
A thermal management article, a method for forming a thermal management article and a thermal management method are disclosed. Forming a thermal management article includes forming a duct adapted to be inserted into a groove on the surface of a substrate, and attaching the duct to the groove so that the top outer surface of the duct is substantially flush with the surface of the substrate. Thermal management of a substrate includes transporting a fluid through the duct of a thermal management article to alter the temperature of the substrate.
Abstract:
Various embodiments include apparatuses adapted to be used as a replacement oil cartridge tip. In some embodiments apparatuses include a replacement swirler ring for an oil cartridge tip, the replacement swirler ring having an annular main body including an inner diameter surface sized to be joined to an outer diameter surface of the oil cartridge tip by a metal joining process including one of brazing, welding temperature or mechanical interference and an outer diameter surface including channels evenly spaced about a primary axis of the annular main body, wherein the annular ring includes a material that is at least as wear-resistant as a material of the oil cartridge tip.