摘要:
In a variable resistance nonvolatile storage element, an electrode suitable for a variable resistance operation and formed of a metallic nitride layer containing Ti and N is provided. In a nonvolatile storage device including: a first electrode; a second electrode; and a variable resistance layer which is sandwiched between the first electrode and the second electrode and in which a resistance value changes to two different resistance states, at least one of the first electrode and the second electrode is an electrode including a metallic nitride layer containing at least Ti and N, and a mole ratio (N/Ti ratio) between Ti and N in at least a part of the metallic nitride layer, the part being in contact with the variable resistance layer is 1.15 or more and a film density is 4.7 g/cc or more.
摘要翻译:在可变电阻非易失性存储元件中,提供了适用于可变电阻操作并由含有Ti和N的金属氮化物层形成的电极。 一种非易失性存储装置,包括:第一电极; 第二电极; 以及可变电阻层,其夹在所述第一电极和所述第二电极之间,并且电阻值变为两个不同的电阻状态,所述第一电极和所述第二电极中的至少一个是包括含有 在金属氮化物层的至少一部分中,最小的Ti和N以及Ti和N之间的摩尔比(N / Ti比),与可变电阻层接触的部分为1.15以上,膜密度为4.7 g / cc以上。
摘要:
A battery block includes a metal case including a side surface and a bottom surface, and a plurality of cells accommodated in the metal case, wherein each cell includes a first electrode and a second electrode which is electrically insulated from the first electrode, and also serves as a cell case of the cell, the plurality of cells are aligned with the first electrodes being in a same direction, the first electrodes of the plurality of cells are connected to a connector arranged to face an opening of the metal case, the second electrodes of the plurality of cells are connected to the bottom surface of the metal case, the height of the side surface of the metal case is substantially the same as the height of the cells, and the opening of the metal case is almost completely covered with the connector.
摘要:
An approach to dividing syndrome calculations into two steps and serially processing them requires a long time for the syndrome calculations with respect to an entire decoding process. Therefore, there is disclosed an error correction decoding circuit for a playing signal having a code sequence having a decoding unit generating first decoded signal and second decoded signal based on the code sequence and an error correction unit performing error correction for the second signal in response to the first signal.
摘要:
Provided is a fuel cell comprising a membrane electrode assembly, a pair of separators that sandwich the membrane electrode assembly therebetween, and a gas inlet distribution part that connects a reactive gas supply manifold hole and a reactive gas flow channel, wherein the gas inlet distribution part comprises n (n is an integer of 2 or more) distribution ribs that divide the gas inlet distribution part into a plurality of spaces, and each have a long axis perpendicular to the long axis of the linear gas flow channel and have two or more slits parallel to the long axis of the linear gas flow channel, when among the ribs, a distribution rib closest to the reactive gas supply manifold hole is defined as a first distribution rib, a distribution rib closest to the reactive gas flow channel is defined as an n-th distribution rib, and among the spaces, a space on the reactive gas supply manifold hole side from the first distribution rib is defined as a diffusion space, the cross-sectional area of the diffusion space is larger than the cross-sectional area of the slit of the first distribution rib.
摘要:
A semiconductor device manufacturing method according to the present invention uses a first raw material gas containing Si, a second raw material gas containing a metal element M and an oxidation gas, in which a first step of supplying the oxidation gas onto a substrate to be treated, and a second step of supplying the first raw material gas are sequentially performed. The method further includes, after the first and second steps, a step of supplying the second raw material gas or gas mixture of the first raw material gas and the second raw material gas.
摘要:
In an MEA member constituted by a polymer electrolyte membrane-electrode assembly (MEA) and a frame and in a polymer electrolyte fuel cell including this MEA member, the MEA and the frame can be easily separated from each other without using any special tool.An MEA member 7 includes an MEA 5 and a plate-shaped resin frame 6, and a separating portion for separating the MEA 5 from the frame 6 is formed in the MEA member 7. The MEA 5 includes a polymer electrolyte membrane 2 and a pair of electrodes 3 and 4 respectively disposed on both main surfaces of the polymer electrolyte membrane 2. The frame 6 sandwiches and holds a peripheral portion of main surfaces of the MEA 5 such that the MEA 5 is located inside the frame. The separating portion is a broken-line cutoff line 50 formed on the frame 6 to divide the frame 6 into two or more parts or a partial sandwiching portion 55 located at an inner peripheral portion of the frame 6 to partially sandwich the peripheral portion of the MEA 5.
摘要:
An image forming apparatus, used with a post-processing apparatus performing a punching process and a stapling process allowing setting of position and number of staples, includes: a detecting device detecting a request in the post-processing unit based on request information input from a user; and a control device connected to receive an output of the detecting device and to control the post-processing apparatus, controlling the post-processing apparatus such that if the detecting device detects requests for the punching process and the stapling process on the same recording paper, manner of staple-binding of the recording paper is set to tentative binding.
摘要:
A navigation device includes a map database 5 that holds map data; a location and direction measurement unit 4 that measures the current location and direction of a vehicle; a route calculation unit 12 that, based on map data read from the map database 5, calculates a route from the current location measured by the location and direction measurement unit to a destination; a camera 7 that captures video images ahead of the vehicle; a video image acquisition unit 8 that acquires the video images ahead of the vehicle captured by the camera; a road width acquisition unit 16 that, based on road width data included in the map data read from the map database, calculates the width of a road segment that enters last into an intersection to which the vehicle is to be guided from among road segments that make up the route calculated by the route calculation unit; a video image composition processing unit 14 that limits the length of a portion that indicates a turning direction of a route guide arrow to the road width calculated by the road width acquisition unit, and that composes the arrow onto the video images acquired by the video image acquisition unit in a superimposing manner; and a display unit 10 that displays the video image composed by the video image composition processing unit.
摘要:
The present invention provides a method of manufacturing a dielectric film having a high permittivity. An embodiment of the present invention is a method of manufacturing, on a substrate, a dielectric film including a metallic oxynitride containing an element A made of Hf or a mixture of Hf and Zr, an element B made of Al, and N and O. The manufacturing method includes: a step of forming a metallic oxynitride whose mole fractions of the element A, the element B, and N expressed as B/(A+B+N) has a range of 0.015≦(B/A+B+N))≦0.095 and N/(A+B+N) has a range of 0.045≦(N/(A+B+N)) and a mole fraction O/A of the element A and O has a range expressed as 1.0
摘要翻译:本发明提供具有高介电常数的电介质膜的制造方法。 本发明的一个实施方式是在基板上制造包含含有由Hf或Hf和Zr的混合物构成的元素A的金属氮氧化物的电介质膜,由Al构成的元素B和N和O. 制造方法包括:形成金属氮氧化物的步骤,其中元素A,元素B和元素B的摩尔分数表示为B /(A + B + N)的范围为0.015&amp; NlE;(B / A + B + N))&nlE; 0.095和N /(A + B + N)的范围为0.045&nlE;(N /(A + B + N)),元素A和O的摩尔分数O / 范围为1.0 <(O / A)<2.0,具有非晶结构; 以及在具有非结晶结构的金属氮氧化物上在700℃以上进行退火处理以形成具有80%以上立方晶结合比例的结晶相的金属氧氮化物的工序。
摘要:
A fuel cell of the present invention includes a membrane-electrode assembly (10), an anode separator (20), and a cathode separator (30). The membrane-electrode assembly (10) includes: a polymer electrolyte membrane (1); a first anode catalyst layer (2A) and an anode gas diffusion layer (4) sequentially stacked on one of main surfaces of the polymer electrolyte membrane (1); a second anode catalyst layer (2B) disposed between the polymer electrolyte membrane (1) and the first anode catalyst layer (2A); and a cathode catalyst layer (3) and a cathode gas diffusion layer (5) sequentially stacked on the other main surface of the polymer electrolyte membrane (1). The second anode catalyst layer (2B) contains a catalyst which adsorbs a sulfur compound.