Abstract:
An alignment method is provided in which a substrate including first and second layers is aligned in forming a second pattern in the second layer. The method includes storing first alignment measurement data to be used in alignment performed in forming a first pattern and a second alignment mark in the second layer, the first alignment measurement data obtained by measuring a first alignment mark provided in the first layer; obtaining second alignment measurement data by measuring the second alignment mark through a resist applied over the second layer; obtaining third alignment measurement data by measuring the first alignment mark through the resist; and performing alignment of the substrate in accordance with a first difference between the first and second alignment measurement data, or in accordance with the first difference and a second difference between the first and third alignment measurement data.
Abstract:
An imprint apparatus for imprinting a pattern provided to a mold onto a substrate or a member on the substrate includes a light source for irradiating a surface of the mold disposed opposite to the substrate and a surface of the substrate with light; an optical system for guiding the light from the light source to the surface of the mold and the surface of the substrate and guiding reflected lights from these surfaces to a spectroscope; a spectroscope for dispersing the reflected lights guided by the optical system into a spectrum; and an analyzer for analyzing a distance between the surface of the mold and the surface of the substrate. The analyzer calculates the distance between the surface of the mold and the surface of the substrate by measuring a distance between the surface of the mold and a surface formed at a position away from the surface of the mold.
Abstract:
A shape measuring apparatus for measuring the shape of a measurement target surface includes an interferometer and computer. The interferometer senses interference light formed by measurement light from the measurement target surface and reference light by a photoelectric converter, while changing the light path length of the measurement light or the reference light. The computer Fourier-transforms a first interference signal sensed by the photoelectric converter to obtain a phase distribution and an amplitude distribution, shapes the amplitude distribution, inversely Fourier-transforms the phase distribution and the shaped amplitude distribution to obtain a second interference signal, and determines the shape of the measurement target surface based on the second interference signal.
Abstract:
There is provided an imprint apparatus configured to perform an imprint in which a resin on a substrate is molded using a mold and a pattern is formed on the substrate. The apparatus includes a press unit configured to press the resin on the substrate and the mold to each other, a cure unit configured to irradiate light to the resin molded by the mold to cure the resin, and a movement unit configured to move the mold and the substrate, from a position at which the press is performed by the press unit to a position at which the light is irradiated by the cure unit, and from the position at which the light is irradiated by the cure unit to a position at which the mold is released.
Abstract:
A surface shape measuring apparatus includes an illumination system and a light receiving system. The illumination system splits wide-band light from a light source into measurement light and reference light, illuminates the measurement light to obliquely enter a surface of the film, and illuminates the reference light to obliquely enter a reference mirror. The light receiving system combines the measurement light reflected by the surface of the film and the reference light reflected by the reference mirror with each other and introduces the combined light to a photoelectric conversion element. An incident angle of the measurement light upon the surface of the film and an incident angle of the reference light upon the reference mirror are each larger than the Brewster's angle. S-polarized light and p-polarized light included in the measurement light entering a surface of the substrate have equal intensity on the photoelectric conversion element.
Abstract:
An apparatus measures a surface position of an object. The apparatus includes an array of members, each of which comprises a probe for an atomic force from the object and is configured to move in accordance with the atomic force, an optical system configured to project a measurement light onto each of the array of members and to receive the measurement light reflected off each of the array of members, and a detector configured to detect the measurement light directed through the optical system with respect to each of the array of members.
Abstract:
A transfer characteristic calculation apparatus for calculating a transfer characteristic of an imaging optical system includes a light source, a generation unit which generates a second signal by converting a first signal obtained by stretching an impulse signal on a space axis into a positive value using a light from the light source, a sensor which obtains an image that is output from the imaging optical system as an output signal when a light intensity distribution is inputted as the second signal, and a calculation unit which calculates the transfer characteristic of the imaging optical system by convolution of a third signal with a fourth signal that is obtained by canceling a bias component of the output signal obtained by the sensor, the third signal being an impulse signal upon convolution with the first signal.
Abstract:
In order to provide a mold and an imprint apparatus which permit adjustment of a depth of an imprint pattern after the imprint pattern is formed, the mold is constituted by a mold substrate including a first material and a surface layer, constituting a projection of the mold and including a second material, for forming a pattern on the photocurable resin material. The first material is more etchable than the second material. The first material and the second material have optical transmittances capable of curing the photocurable resin material with respect to at least a part of wavelength range of ultraviolet light.
Abstract:
A method for producing a library includes the steps of calculating a plurality of conditions for a reflection light from a periodic pattern by changing the sectional shape of the periodic pattern, a condition of an incident light which is emitted to the periodic pattern, an optical constant of a material which forms the periodic pattern, relating a plurality of the libraries to the plurality of the reflection light's conditions, and the optical constant corresponding to the plurality of the reflection light's conditions respectively.
Abstract:
An alignment apparatus for aligning a reflective reticle includes a light source for emitting alignment light, an optical alignment mark provided on the reticle, and a reference mark provided on a reticle stage that holds the reticle. A detecting unit detects the alignment light reflected from the alignment mark and the reference mark, and the reticle is aligned on the basis of the result of detection by the detection unit.