摘要:
A non-volatile memory device for 2-bit operation and a method of fabricating the same are provided. The non-volatile memory device includes an active region and a gate extending in a word line direction on a semiconductor substrate, and crossing each other repeatedly; a charge storage layer disposed below the gate, and confined at a portion where the gate and the active region cross; a charge blocking layer formed on the charge storage layer; a tunnel dielectric layer formed below the charge storage layer; first and second source/drain regions formed in the active region exposed by the gate; and first and second bit lines crossing the word line direction. The active region may be formed in a first zigzag pattern and/or the gate may be formed in a second zigzag pattern in symmetry with the first zigzag pattern.
摘要:
A non-volatile memory device for 2-bit operation and a method of fabricating the same are provided. The non-volatile memory device includes an active region and a gate extending in a word line direction on a semiconductor substrate, and crossing each other repeatedly; a charge storage layer disposed below the gate, and confined at a portion where the gate and the active region cross; a charge blocking layer formed on the charge storage layer; a tunnel dielectric layer formed below the charge storage layer; first and second source/drain regions formed in the active region exposed by the gate; and first and second bit lines crossing the word line direction. The active region may be formed in a first zigzag pattern and/or the gate may be formed in a second zigzag pattern in symmetry with the first zigzag pattern.
摘要:
A transistor having a gate dielectric layer of partial thickness difference and a method of fabricating the same are provided. The method includes forming a gate dielectric layer having a main portion with a relatively thin thickness formed on a semiconductor substrate, and a sidewall portion with a relatively thick thickness formed on both sides of the main portion. A first gate is formed overlapping the main portion of the gate dielectric layer, and forming a second gate layer covering the sidewall portion of the gate dielectric layer and covering the first gate. The second gate layer is etched, thereby forming second gates patterned with a spacer shape on sidewalls of the first gate. The exposed sidewall portion of the gate dielectric layer is selectively etched using the second gates as a mask, thereby forming a pattern of the gate dielectric layer to be aligned with the second gates. A source/drain is formed in a portion of the semiconductor substrate exposed by the second gates.
摘要:
In a flash memory device, which can maintain an enhanced electric field between a control gate and a storage node (floating gate) and has a reduced cell size, and a method of manufacturing the flash memory device, the flash memory device includes a semiconductor substrate having a pair of drain regions and a source region formed between the pair of drain regions, a pair of spacer-shaped control gates each formed on the semiconductor substrate between the source region and each of the drain regions, and a storage node formed in a region between the control gate and the semiconductor substrate. A bottom surface of each of the control gates includes a first region that overlaps with the semiconductor substrate and a second region that overlaps with the storage node. The pair of spacer-shaped control gates are substantially symmetrical with each other about the source region.
摘要:
In a floating gate memory cell including a floating gate separated from an active region by a tunnel isolation region, a first one of the active region and the floating gate comprises a portion that protrudes towards a second one of the active region and the floating gate. In some embodiments, the protruding portion tapers toward the second one of the active region and the floating gate. The tunnel insulation layer may be narrowed at the protruding portion. Protruding portions may be formed on both the floating gate and the active region.
摘要:
In a flash memory device, which can maintain an enhanced electric field between a control gate and a storage node (floating gate) and has a reduced cell size, and a method of manufacturing the flash memory device, the flash memory device includes a semiconductor substrate having a pair of drain regions and a source region formed between the pair of drain regions, a pair of spacer-shaped control gates each formed on the semiconductor substrate between the source region and each of the drain regions, and a storage node formed in a region between the control gate and the semiconductor substrate. A bottom surface of each of the control gates includes a first region that overlaps with the semiconductor substrate and a second region that overlaps with the storage node. The pair of spacer-shaped control gates are substantially symmetrical with each other about the source region.
摘要:
An integrated circuit structure can include an isolation structure that electrically isolates an active region of an integrated circuit substrate from adjacent active regions and an insulation layer that extends from the isolation structure to beneath the active region. An epitaxial silicon layer extends from the active region through the insulation layer to a substrate beneath the insulation layer.
摘要:
A method of manufacturing a MOS transistor with a void-free gate electrode is provided. A gate oxide film may be formed on a semiconductor, and a poly silicon film for a gate electrode may be deposited on the gate oxide film. P-type impurities may be implanted into the poly silicon film, and a thickness of the poly silicon film may be removed by chemical mechanical polishing.
摘要:
In a floating gate memory cell including a floating gate separated from an active region by a tunnel isolation region, a first one of the active region and the floating gate comprises a portion that protrudes towards a second one of the active region and the floating gate. In some embodiments, the protruding portion tapers toward the second one of the active region and the floating gate. The tunnel insulation layer may be narrowed at the protruding portion. Protruding portions may be formed on both the floating gate and the active region.
摘要:
Semiconductor devices include a semiconductor substrate with a stack structure protruding from the semiconductor substrate and surrounded by an isolation structure. The stack structure includes an active layer pattern and a gap-filling insulation layer between the semiconductor substrate and the active layer pattern. A gate electrode extends from the isolation structure around the stack structure. The gate electrode is configured to provide a support structure for the active layer pattern. The gate electrode may be a gate electrode of a silicon on insulator (SOI) device formed on the semiconductor wafer and the semiconductor device may further include a bulk silicon device formed on the semiconductor substrate in a region of the semiconductor substrate not including the gap-filing insulation layer.