Abstract:
The subject disclosure relates to employing grouping and selection components to facilitate a grouping of failure data associated with oil and gas exploration equipment into one or more equipment failure type groups. In an example, a method comprises grouping, by a system operatively coupled to a processor, training data of a set of equipment failure data into one or more failure type groups based on one or more determined failure criteria, wherein the one or more failure type groups represent equipment failure classifications associated with energy exploration processes; and selecting, by the system, first ungrouped data from the set of equipment failure data based on a level of similarity between the first ungrouped data and the training data.
Abstract:
A method for distributed file transfers with high performance and reliability includes creating, on a first Trivial File Transfer Protocol (TFTP) server, a global cache, where the global cache is used to store up to a first portion of a data file. The method further includes storing, on the first TFTP server, in the global cache, one or more continuous data blocks that have exceeded a defined first request rate threshold, where the one or more continuous data blocks make up a subset of the data blocks of the first portion of the data file. The method further includes predicting, on the first TFTP server, a next data block in the data file to be stored in the global cache and in response to predicting the next data block, storing, on the first TFTP server, the next data block in the global cache.
Abstract:
A method for distributed file transfers with high performance and reliability includes creating, on a first Trivial File Transfer Protocol (TFTP) server, a global cache, where the global cache is used to store up to a first portion of a data file. The method further includes storing, on the first TFTP server, in the global cache, one or more continuous data blocks that have exceeded a defined first request rate threshold, where the one or more continuous data blocks make up a subset of the data blocks of the first portion of the data file. The method further includes predicting, on the first TFTP server, a next data block in the data file to be stored in the global cache and in response to predicting the next data block, storing, on the first TFTP server, the next data block in the global cache.
Abstract:
A method for detecting deviations between an event log and a process model includes converting the process model into a probability process model, the probability process model comprising multiple nodes in multiple hierarchies and probability distribution associated with the multiple nodes, a leaf node among the multiple nodes corresponding to an activity in the process model; detecting differences between at least one event sequence contained in the event log and the probability process model according to a correspondence relationship; and identifying the differences as the deviations in response to the differences exceeding a predefined threshold; wherein the correspondence relationship describes a correspondence relationship between an event in one event sequence of the at least one event sequence and a leaf node in the probability process model.
Abstract:
A wear leveling technique is employed in a memory device so that the cycling history of a memory block is represented by the cycling history of a representative memory cell or a small number of representative memory cells. A control logic block tracks the cycling history of the one or more representative memory cells. A table tabulating the predicted shift in an optimal value for a reference variable for a sensing circuit as a function of cycling history is provided within the memory device. Prior to sensing a memory cell, the control logic block checks the total number of cycling in the one or more representative memory cells and adjusts the value for the reference variable in the sensing circuit, thereby providing an optimal value for the reference variable in the sensing circuit for each sensing cycle of the memory device.
Abstract:
A phase change memory cell and a method for fabricating the phase change memory cell. The phase change memory cell includes a bottom electrode and a first non-conductive layer. The first non-conductive layer defines a first well, a first electrically conductive liner lines the first well, and the first well is filled with a phase change material in the phase change memory cell.
Abstract:
A memory array and a method for electrically coupling memory cell access devices to a word line. The memory array includes a source line electrically coupled to each source terminal of the memory cell access devices. The memory array also includes a first set of at least two vertical pillars positioned above and electrically coupled to the source line. A second set of vertical pillars electrically isolated from the source line and positioned such that the source line does not extend below the second set of vertical pillars is also included. Furthermore, gate terminals of the memory cell access devices laterally surround the first set of vertical pillars and the second set of vertical pillars. Finally, a first word line contact is positioned between two of the second set of vertical pillars. The first word line contact is electrically coupled to the gate terminals.
Abstract:
A memory array and a method for electrically coupling memory cell access devices to a word line. The memory array includes a source line electrically coupled to each source terminal of the memory cell access devices. The memory array also includes a first set of at least two vertical pillars positioned above and electrically coupled to the source line. A second set of vertical pillars electrically isolated from the source line and positioned such that the source line does not extend below the second set of vertical pillars is also included. Furthermore, gate terminals of the memory cell access devices laterally surround the first set of vertical pillars and the second set of vertical pillars. Finally, a first word line contact is positioned between two of the second set of vertical pillars. The first word line contact is electrically coupled to the gate terminals.
Abstract:
A method for fabricating vertical surround gate structures in semiconductor device arrays. The method includes forming pillars separated by vertical and horizontal trenches on a substrate. Forming a gate layer over the pillars and trenches such that the gate layer forms gate trenches in the horizontal trenches. The method includes forming fillers within the gate trenches, and planarizing the gate layer and fillers. The method also includes successively etching a first portion of the gate layer, removing the fillers, and etching a second portion of the gate layer.