Abstract:
Disclosed is method and apparatus for creating a statistical average model of an enamel-dentine junction. The method includes steps of: acquiring CT image data of a tooth; segmenting the CT image data to obtain a surface of an enamel-dentine junction; segmenting the obtained surface using a curvature-based clustering algorithm to remove a bottom of the enamel-dentine junction; spherical-parameterizing, by means of spherical harmonic analysis, the surface of the enamel-dentine junction after removal of the bottom; and aligning different samples of the tooth to obtain a statistical average model.
Abstract:
A CT system and method thereof are discloses. The system includes: a fixed multi-plane multi-source X-ray generation device and a control system thereof that provide X-ray source used in luggage inspection; a single-energy, pseudo-dual-energy or spectral detector system and data transfer system that receive perspective data of X ray penetrating the luggage, and transfer the data to a computer for processing; a conveyor and a control system thereof that control a speed for moving the luggage forth and back, and perform tomogram scanning; and a host computer system that performs tomogram reconstruction and provides man-machine interaction. The system takes full advantage of characteristics, such as high speed and stability, brought by the distributed ray sources which replace the normal slip ring technology. The system also adopts the idea of inverse-geometry CT, and reduces detector area and cost by increasing the number of ray sources. With the reduction of detector area, cone-beam artifacts and cup-shape artifacts caused by scattering are also reduced, and influence of the oblique effect on registration of dual-energy data is suppressed.
Abstract:
The invention presents a backscattering scintillation detector. The scintillation detector includes a scintillation crystal detector; a X-ray sensitizing screen, which is disposed forward the scintillation crystal detector and where a backscattered X-ray from an object to be detected is processed and then at least part of the processed X-ray is incident to scintillation crystal detector; and photoelectric multiplier, which is disposed backward the scintillation crystal detector and is configured to collect a light signal from scintillation crystal detector and convert it to an electrical signal. Through the above preferable embodiment, a X-ray sensitizing screen, a scintillation crystal detector, and light guiding and wave-drifting technologies are combined together to obtain a novel scintillation detector, which can improve detection of X-ray, transmission of light signal and conversion of light signal to electrical signal.
Abstract:
The present invention discloses a general sample injector, comprising a sample injection port mechanism, a sample injector shell, a vaporizing chamber, a heater, a temperature control unit, a carrier gas channel, a septum purge channel, a flow splitting channel, a coolant channel, a multichannel flow control valve and a temperature control unit. The general sample injector, equivalent to a “programmed temperature vaporizer” injector combining splitting/no splitting with cold column head sample injection, gives full play to the advantages of various sample injection modes, overcomes a plurality of disadvantages, and has higher practicability and better flexibility.
Abstract:
The X-ray fluoroscopic imaging system of the present invention comprises: an inspection passage; an electron accelerator; a shielding collimator apparatus comprising a shielding structure, and a first collimator for extracting a low energy planar sector X-ray beam and a second collimator for extracting a high energy planar sector X-ray beam which are disposed within the shielding structure; a low energy detector array for receiving the X-ray beam from the first collimator; and a high energy detector array for receiving the X-ray beam from the second collimator. The first collimator, the low energy detector array and the target point bombarded by the electron beam are located in a first plane; and the second collimator, the high energy detector array and the target point bombarded by the electron beam are located in a second plane.
Abstract:
An embodiment of the present invention provides a Raman spectroscopic detection method for detecting a sample in a vessel, comprising the steps of: (a) measuring a Raman spectrum of the vessel to obtain a first Raman spectroscopic signal; (b) measuring a Raman spectrum of the sample through the vessel to obtain a second Raman spectroscopic signal; (c) removing an interference caused by the Raman spectrum of the vessel from the second Raman spectroscopic signal on basis of the first Raman spectroscopic signal to obtain a third Raman spectroscopic signal of the sample itself; and (d) identifying the sample on basis of the third Raman spectroscopic signal. By means of the above method, the Raman spectrum of the sample in the vessel may be detected correctly so as to identify the sample to be detected efficiently.
Abstract:
The present disclosure provides method and apparatus for marking a target in a 3D image. The method include steps of: acquiring Computed Tomography (CT) image data of a scene; rendering a 3D image of the scene using ray casting based on the CT image data; removing a transparent region from the 3D image based on a fixed 2D transfer function; and marking the target in the 3D image.
Abstract:
A static CT apparatus and an imaging method for the same are provided. The imaging method includes: acquiring initial projection data of an inspected object at different angles by using a distributed ray source and a detector, where the initial projection data includes projection data that is directly obtained by the detector based on the rays emitted from a plurality of ray source points; obtaining a first CT image using a reconstruction algorithm according to the acquired initial projection data; dividing the first CT image into N first sub-images, where N is a positive integer greater than or equal to 1, and a union of the N first sub-images covers the entire first CT image; optimizing the N first sub-images to obtain N second sub-images; and merging the N second sub-images to obtain a second CT image.
Abstract:
A calibration assembly, including: a base; and a plurality of calibration wires dispersedly connected to the base. An absorption capacity of the calibration wire for X rays is greater than that of the base for X rays. Through a specific structure design of a plurality of calibration wires in the calibration assembly, the calibration wires are dispersedly connected to the base, and taking advantage of the characteristics that the absorption capacity of the calibration wire for X rays is greater than that of the base for X rays, the calibration wires are applied to the calibration phantom, and the calibration phantom is scanned in the scanning system. By continuously adjusting the geometric parameter values in the imaging method, the optimal geometric parameter values that are closest to the real scanning system structure may be obtained, thereby improving the imaging effect of the scanning system.
Abstract:
An inspection device includes: an inspection channel, through which the object enters and exits the inspection device; an imaging system, including a radiation source used to generate a ray, the radiation source is disposed on one side of the inspection channel, and the ray at least forms a main beam surface applicable to scan and inspect the object; and a detector used to receive the ray passing through the object, the detector is disposed on the other side of the inspection channel to form an inspection region between the radiation source and the detector; and a posture adjustment structure disposed in the inspection region and used to adjust a posture of the object in the inspection region. The object has an inspection surface. The posture adjustment structure may adjust the posture of the object, so that the inspection surface and the main beam surface are in the same plane.