摘要:
A system, method and device for measuring a depth of a Through-Silicon-Via (TSV) in a semiconductor device region on a wafer during in-line semiconductor fabrication, includes a resistance measurement trench structure having length and width dimensions in a substrate, ohmic contacts on a surface of the substrate disposed on opposite sides of the resistance measurement trench structure, and an unfilled TSV structure in semiconductor device region having an unknown depth. A testing circuit makes contact with the ohmic contacts and measures a resistance therebetween, and a processor connected to the testing circuit calculates a depth of the trench structure and the unfilled TSV structure based on the resistance measurement. The resistance measurement trench structure and the unfilled TSV are created simultaneously during fabrication.
摘要:
A method of fabricating an heterojunction bipolar transistor (HBT) structure in a bipolar complementary metal-oxide-semiconductor (BiCMOS) process selectively thickens an oxide layer overlying a base region in areas that are not covered by a temporary emitter and spacers such that the temporary emitter can be removed and the base-emitter junction can be exposed without also completely removing the oxide overlying the areas of the base region that are not covered by the temporary emitter or spacers. As a result, a photomask is not required to remove the temporary emitter and to expose the base-emitter junction.
摘要:
A semiconductor structure. The semiconductor structure includes (a) a substrate; (b) a first semiconductor device on the substrate; (c) N ILD (Inter-Level Dielectric) layers on the first semiconductor device, wherein N is an integer greater than one; and (d) an electrically conductive line electrically coupled to the first semiconductor device. The electrically conductive line is adapted to carry a lateral electric current in a lateral direction parallel to an interfacing surface between two consecutive ILD layers of the N ILD layers. The electrically conductive line is present in at least two ILD layers of the N ILD layers. The electrically conductive line does not comprise an electrically conductive via that is adapted to carry a vertical electric current in a vertical direction perpendicular to the interfacing surface.
摘要:
The present invention provides a method of forming a self-aligned heterobipolar transistor (HBT) device in a BiCMOS technology. The method includes forming a raised extrinsic base structure by using an epitaxial growth process in which the growth rate between single crystal silicon and polycrystalline silicon is different and by using a low temperature oxidation process such as a high-pressure oxidation (HIPOX) process to form a self-aligned emitter/extrinsic base HBT structure.
摘要:
A complementary bipolar transistor is fabricated using an available portion of a silicon germanium (SiGe) low temperature epitaxial layer as the raised base region for a vertical NPN transistor, and another portion of the same SiGe LTE layer as a vertical PNP collector layer. The complementary pair of transistors is vertically aligned and operates in a single direction.
摘要:
The invention includes methods of fabricating a bipolar transistor that adds a silicon germanium (SiGe) layer or a third insulator layer of, e.g., high pressure oxide (HIPOX), atop an emitter cap adjacent the intrinsic base prior to forming a link-up layer. This addition allows for removal of the link-up layer using wet etch chemistries to remove the excess SiGe or third insulator layer formed atop the emitter cap without using oxidation. In this case, an oxide section (formed by deposition of an oxide or segregation of the above-mentioned HIPOX layer) and nitride spacer can be used to form the emitter-base isolation. The invention results in lower thermal cycle, lower stress levels, and more control over the emitter cap layer thickness, which are drawbacks of the first embodiment. The invention also includes the resulting bipolar transistor structure.
摘要:
A complementary bipolar transistor is fabricated using an available a portion of a silicon germanium (SiGe) low temperature epitaxial layer as the raised base region for a vertical NPN transistor, and another portion of the same SiGe LTE layer as a vertical PNP collector layer. The complementary pair of transistors is vertically aligned and operates in a single direction.
摘要:
Methods for fabricating a heterojunction bipolar transistor having a raised extrinsic base is provided in which the base resistance is reduced by forming a silicide atop the raised extrinsic base that extends to the emitter region in a self-aligned manner. The silicide formation is incorporated into a BiCMOS process flow after the raised extrinsic base has been formed. The present invention also provides a heterojunction bipolar transistor having a raised extrinsic base and a silicide located atop the raised extrinsic base. The silicide atop the raised extrinsic base extends to the emitter in a self-aligned manner. The emitter is separated from the silicide by a spacer.
摘要:
A method of fabricating a bipolar transistor structure that provides unit current gain frequency (fT) and maximum oscillation frequency (fMAX) improvements of a raised extrinsic base using non-self-aligned techniques to establish a self-aligned structure. Accordingly, the invention eliminates the complexity and cost of current self-aligned raised extrinsic base processes. The invention forms a raised extrinsic base and an emitter opening over a landing pad, i.e., etch stop layer, then replaces the landing pad with a conductor that is converted, in part, to an insulator. An emitter is then formed in the emitter opening once the insulator is removed from the emitter opening. An unconverted portion of the conductor provides a conductive base link and a remaining portion of the insulator under a spacer isolates the extrinsic base from the emitter while maintaining self-alignment of the emitter to the extrinsic base. The invention also includes the resulting bipolar transistor structure.
摘要:
A heterojunction bipolar transistor (HBT) structure, method of manufacturing the same and design structure thereof are provided. The HBT structure includes a semiconductor substrate having a sub-collector region therein. The HBT structure further includes a collector region overlying a portion of the sub-collector region. The HBT structure further includes an intrinsic base layer overlying at least a portion of the collector region. The HBT structure further includes an extrinsic base layer adjacent to and electrically connected to the intrinsic base layer. The HBT structure further includes an isolation region extending vertically between the extrinsic base layer and the sub-collector region. The HBT structure further includes an emitter overlying a portion of the intrinsic base layer. The HBT structure further includes a collector contact electrically connected to the sub-collector region. The collector contact advantageously extends through at least a portion of the extrinsic base layer.