Abstract:
A thin film solar cell module comprising thin film solar cells deposited on a first float glass sheet, an ionomer encapsulant sheet and a float glass protective sheet.
Abstract:
A concentrator solar cell module comprises at least one solar cell and at least one light concentrating article. The at least one light concentrating article is capable of concentrating about 1.02 to about 2000 sun equivalents of solar energy onto the solar cell(s) and comprises an ionomer composition. The ionomer composition comprises or is produced from an ionomer that has a temperature of onset of creep that is significantly greater than its peak melting temperature.
Abstract:
A pipe or tube article comprising an innermost comprising a grafted polyolefin composition made from a grafted polyolefin composition is disclosed which can provide long lifetime, highly abrasion-resistant pipes for mining and other transportation uses. Methods for preparing the article and transporting abrasive materials through the article are also described.
Abstract:
A pipe- or tube-shaped article having an innermost layer is disclosed which comprises a polyolefin composition comprising a polyolefin comprising ethylene and an α-olefin. The article provides long lifetime, highly abrasion-resistant pipes for mining and other transportation uses. Also disclosed are methods for preparing the article and transporting abrasive materials.
Abstract:
An article is disclosed which comprises a substrate and an outermost layer where the outermost layer or a portion thereof adheres to or in contact with the substrate and comprises a polyolefin composition and the article provides long lifetime, highly abrasion-resistant articles for use in a wide range of aggressive environmental conditions and can be used as safety glass or solar cell laminate.
Abstract:
Provided is a solar cell module comprising a solar cell layer and an ionomer sheet comprising an ionomer composition, said ionomer composition comprises a first ionomer that is the neutralized product of a first precursor acid copolymer, wherein, (A) the first precursor acid copolymer comprises copolymerized units of a first α-olefin having 2 to 10 carbon atoms and about 20 to about 30 wt %, based on the total weight of the first precursor acid copolymer, of copolymerized units of a second α,β-ethylenically unsaturated carboxylic acid having 3 to 8 carbon atoms; (B) the first precursor acid copolymer has a melt flow rate of about 70 to about 1000 g/10 min, as determined in accordance with ASTM D1238 at 190° C. and 2.16 kg; and (C) the first precursor acid copolymer, when neutralized to a level of about 40% to about 90% and when comprising counterions that consist essentially of sodium cations, produces a sodium ionomer, and said sodium ionomer has a melt flow rate of about 0.7 to about 25 g/10 min and a freeze enthalpy that is not detectable or that is less than about 3.0 j/g, when determined by differential scanning calorimetry (DSC) in accordance with ASTM D3418. The ionomer composition may further comprise a second ionomer that is the neutralization product of a second precursor acid copolymer, wherein, (D) the second precursor acid copolymer comprises copolymerized units of a second α-olefin having 2 to 10 carbon atoms and about 18 to about 30 wt % of copolymerized units of a second α,β-ethylenically unsaturated carboxylic acid having 3 to 8 carbon atoms; (E) the second α-olefin may be the same as or different from the first α-olefin; and the second α,β-ethylenically unsaturated carboxylic acid may be the same as or different from the first α,β-ethylenically unsaturated carboxylic acid; and (F) the second precursor acid copolymer has a melt flow rate of about 60 g/10 min or less; and (G) the second ionomer has a melt flow rate of about 10 g/10 min or less.
Abstract:
Provided is a solar control composition comprising an infrared absorbing phthalocyanine, naphthalocyanine or rylene compound and an ethylene acid copolymer or an ionomer of an ethylene acid copolymer. Further provided are solar control laminates comprising the solar control composition of the invention.
Abstract:
A solar cell module comprising a solar cell layer comprised of one or a plurality of electrically interconnected solar cells and an encapsulant layer comprised or made of a poly(vinyl butyral) sheet having melt flow rate (MFR) of about 0.8 to about 2 g/10 min as determined according to ASTM 1238 (150° C., 5 kg load, 2 mm orifice) and a process for producing the same.
Abstract translation:一种太阳能电池模块,包括由一个或多个电互连的太阳能电池组成的太阳能电池层和由熔体流动速率(MFR)为约0.8至约2g / m 2的聚(乙烯醇缩丁醛)片材制成或制成的密封剂层, 根据ASTM 1238(150℃,5kg负荷,2mm孔)测定的10分钟及其制备方法。
Abstract:
The present invention provides an acid terpolymer comprising multilayer film or sheet and safety laminates and solar cell pre-lamination assemblies comprising the same.
Abstract:
The present invention provides a solar cell pre-laminate assembly comprising one or more solar cells laminated between two compositionally distinct encapsulant layers, and the method of preparing a solar cell module from such an assembly.