Digital down converter
    82.
    发明授权

    公开(公告)号:US10666293B2

    公开(公告)日:2020-05-26

    申请号:US15960591

    申请日:2018-04-24

    Abstract: A digital down converter includes a low resolution mixer, a decimation filter, and a high resolution mixer. The low resolution mixer is configured to receive a digitized radio frequency signal, and apply a first down conversion to the radio frequency signal to produce an intermediate frequency signal. The decimation filter is coupled to the low resolution mixer. The decimation filter is configured to receive the intermediate frequency signal, and reduce a sampling rate of the intermediate frequency signal to produce a decimated intermediate frequency signal. The high resolution mixer is coupled to the decimation filter. The high resolution mixer is configured to receive the decimated intermediate frequency signal, and apply a second down conversion to the decimated intermediate frequency signal to produce a down converted signal.

    INTERNALLY TRUNCATED MULTIPLIER
    83.
    发明申请

    公开(公告)号:US20190317731A1

    公开(公告)日:2019-10-17

    申请号:US16454369

    申请日:2019-06-27

    Abstract: A multiplier circuit includes a partial product generation circuit, a truncation circuit, and a summation circuit. The partial product generation circuit is configured to generate a plurality of partial products for multiplying two values. The truncation circuit is coupled to the partial product generation circuit. The truncation circuit is configured to shorten at least some of the partial products by removing a least significant bit from the at least some of the partial products. The summation circuit coupled to the truncation circuit. The summation circuit is configured to sum the truncated partial products produced by the truncation circuit.

    DIGITAL FILTERING FOR A SIGNAL WITH TARGET AND SECONDARY SIGNAL BANDS

    公开(公告)号:US20190280675A1

    公开(公告)日:2019-09-12

    申请号:US16351357

    申请日:2019-03-12

    Abstract: A zero-insertion FIR filter architecture for filtering a signal with a target band and a secondary band. Digital filter circuitry includes an L-tap FIR (finite impulse response) filter, with a number L filter tap elements (L=0, 1, 2, . . . (L−1)), each with an assigned coefficient from a defined coefficient sequence. The L-tap FIR filter is configurable with a defined zero-insertion coefficient sequence of a repeating sub-sequence of a nonzero coefficient followed by one or more zero-inserted coefficients, with a number Nj of nonzero coefficients, and a number Nk of zero-inserted coefficients, so that L=Nj+Nk. The L-tap FIR filter is configurable as an M-tap FIR filter with a nonzero coefficient sequence in which each of the L filter tap elements is assigned a non-zero coefficient, the M-tap FIR filter having an effective length of M=(Nj+Nk) non-zero coefficients.

    SIGNAL COMPRESSION FOR SERIALIZED SIGNAL BANDWIDTH REDUCTION

    公开(公告)号:US20190068238A1

    公开(公告)日:2019-02-28

    申请号:US15934946

    申请日:2018-03-23

    Abstract: Signal compression for serialized data bandwidth reduction based on decomposition of a data signal into separate signal components with different SQNR or dynamic range requirements, and quantizing the signal components with different bit precisions. Compression logic decomposes the input data signal into the first/second signal components, quantizes the first component with a pre-defined first bit precision to provide a first quantized data signal, quantizes the second component with a pre-defined second bit precision to provide a second quantized data signal, the second bit precision less than the first bit precision, the first and second quantized data signals bit packed into a compressed digital data signal. At the receive-end, decompression logic bit unpacks the compressed digital data signal into the first/second quantized data signals, and filters/combines the first/second quantized data signals into a decompressed data signal corresponding to the input data signal including the first and second signal components.

    Quadrature signal processing apparatus with I, Q clipping mismatch compensation

    公开(公告)号:US09900205B2

    公开(公告)日:2018-02-20

    申请号:US14693416

    申请日:2015-04-22

    CPC classification number: H04L27/3863 H04B1/0039

    Abstract: Apparatus and methods disclosed herein perform gain, clipping, and phase compensation in the presence of I/Q mismatch in quadrature RF receivers. Gain and phase mismatch are exacerbated by differences in clipping between I & Q signals in low resolution ADCs. Signals in the stronger channel arm are clipped differentially more than weaker signals in the other channel arm. Embodiments herein perform clipping operations during iterations of gain mismatch calculations in order to balance clipping between the I and Q channel arms. Gain compensation coefficients are iteratively converged, clipping levels are established, and data flowing through the network is gain and clipping compensated. A compensation phase angle and phase compensation coefficients are then determined from gain and clipping compensated sample data. The resulting phase compensation coefficients are applied to the gain and clipping corrected receiver data to yield a gain, clipping, and phase compensated data stream.

Patent Agency Ranking