Abstract:
An ultrasound transducer includes: an acoustic matching layer bending with a predetermined curvature; a plurality of piezoelectric elements disposed on an inner face on a side of a curvature center of the acoustic matching layer in such a manner that the plurality of piezoelectric elements bend; a plurality of wirings including respective one ends electrically connected to the plurality of piezoelectric elements, respectively; a substrate to which respective other ends of the plurality of wirings are electrically connected; and a holding member provided on the plurality of wirings at a position partway of the plurality of wirings between the plurality of piezoelectric elements and the substrate, the holding member being configured to hold a pitch of the plurality of wirings so as to be a pitch that is equal to or smaller than a predetermined arrangement pitch of the plurality of piezoelectric elements.
Abstract:
Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.
Abstract:
A circuit for driving ultrasound transducers uses a sample-and-hold circuit to sample multiple sample periods of a transducer driving waveform, and uses the samples to modify drive parameters. Use of multiple sample periods enables independent measurement and adjustment of different portions of the transducer driving waveform to ensure mirror symmetry.
Abstract:
An ultrasonic actuation apparatus includes a piezoelectric transducer producing a first ultrasonic signal; a second transducer; and a platen, the platen being directly and/or acoustically coupled to the piezoelectric transducer and the second transducer. The second transducer may be a MEMS microphone. The second transducer is configured to receive the first ultrasonic signal at a first time, and a second ultrasonic signal at second time. The second ultrasonic signal has been modified from the first ultrasonic signal in correspondence with an object being in contact with the platen.
Abstract:
A system for processing biological or other samples includes an array of transducer elements that are positioned to align with sample wells in a microplate. Each transducer element produces ultrasound energy that is focused towards a well of the microplate with sufficient acoustic pressure to cause inertial cavitation. In one embodiment, the transducers are configured to direct ultrasound energy into cylindrical wells. In other embodiments, the transducer elements are configured to direct ultrasound energy into non-cylindrical wells of a microplate.
Abstract:
An array of piezoelectric ultrasonic transducer elements includes a plurality of superpixel regions. Each superpixel region includes at least two pixel sets, a first pixel set of the at least two pixel sets being disposed in a central portion of the superpixel region, and at least a second pixel set being disposed in an outer portion of the superpixel region. An electrical coupling may be provided between the array and transceiver electronics. The transceiver electronics may be configured to operate the array in a selectable one of a first mode and a second mode. In the first mode, the array generates a substantially plane ultrasonic wave having a first acoustic pressure. In the second mode, the array generates, from each superpixel region, a focused beam having a second acoustic pressure that is substantially higher than the first acoustic pressure.
Abstract:
An ultrasound machine for generating push-pulses to excite shear wave stimulation employs separated angled beams that converge at the target region to generate the push-pulses. In one embodiment, the beams are modulated by a set of apodization functions to reduce side lobes caused by the narrowing of the apertures of the beam as well as transducer heating by reducing the average energy deposited in each transducer element
Abstract:
A first controller can have a greater number of output lines than a second controller has input lines. The first controller can receive an ultrasonic transducer control signal and provide a first portion of the control signal to the first processor, where the length of the first portion is less than or equal to the number of input lines of the second processor. The first processor can send portions of the control signal to a plurality of second processors. Each of the plurality of second processors can have a number of input lines less than the number of output lines of the first processor. Portions of the control signal can be sent through the output lines of the first processor to the plurality of second processors at substantially the same time.
Abstract:
In order to reduce crosstalk between analog and digital signals, a circuit device includes a vibrator element, a semiconductor device, and a package. In the semiconductor device, an analog pad is provided along a first side facing in a first direction when the semiconductor device is seen in plan view. In addition, a digital pad is provided along aside facing in a second direction opposite to the first direction, that is, a second side facing the first side. In the package, an analog terminal which is connected to the analog pad is provided on a first side of the package facing in the first direction. In addition, a digital terminal which is connected to the digital pad is provided on a second side of the package facing in the second direction.
Abstract:
A piezoelectric device is provided with a piezoelectric element including a piezoelectric layer exhibiting a polarizability γ smaller than 1×10−9 (C/(V·m)) in the case where an electric field is applied until polarization is saturated and a circuit having a means to set a minimum value of a drive electric field to become larger than a positive coercive electric field of the above-described piezoelectric layer and a means to set a maximum value of the above-described drive electric field to become smaller than (Pm′ (maximum value of polarization)−Pr′ (quasi-remanent polarization))/(1×10−9) and, therefore, an object is to drive the piezoelectric element in an electric field range in which maximum piezoelectric characteristics are obtained, improve the characteristics of the piezoelectric device, and enhance the reliability.