摘要:
All treatments performed in machining processes other than a polishing process are performed while pure water free from free abrasive grains is supplied. Thus, an amount of abrasive grains included in a used processing liquid discharged in each process is reduced and semiconductor scraps are collected from the used slurry for recycling.
摘要:
The present invention provides a wire saw which cuts a workpiece using a cutting wire and is capable of adjusting wire tension with high responsiveness. The wire saw includes first and second workpiece cutting units 1A and 1B. Each of the workpiece cutting units 1A and 1B includes a pair of guide rollers 10a and 10b around which a wire W is wound to form a workpiece-cutting wire group. The wire saw further includes a tension detector 18 which detects tension in the wire W between the workpiece cutting units 1A and 1B, and a control device 50. The control device 50 changes a rotational speed of the guide rollers 10a and 10b of at least one of the workpiece cutting units based on the tension detected by the tension detector 18 so as to keep the tension within an acceptable range.
摘要:
A sapphire substrate includes a generally planar surface having a crystallographic orientation selected from the group consisting of a-plane, r-plane, m-plane, and c-plane orientations, and having a nTTV of not greater than about 0.037 μm/cm2, wherein nTTV is total thickness variation normalized for surface area of the generally planar surface, the substrate having a diameter not less than about 9.0 cm.
摘要翻译:蓝宝石衬底包括具有选自由a面,r面,m面和c面取向组成的组的结晶取向并且具有不大于约0.037μm/ cm 2的nTTV的大致平坦表面, 其中nTTV是对于大致平坦的表面的表面积进行标准化的总厚度变化,所述基底的直径不小于约9.0cm。
摘要:
Methods, wires, and apparatus for use in cutting (e.g., slicing) hard, brittle materials is provided. The wire can be a super-abrasive wire that includes a wire core and super-abrasive particles bonded to the wire core via a metal bonding layer. This wire, or another type of wire, can be used to slice workpieces useful for producing wafers. The workpieces can be aligned within a holder to produce wafers using the device and methods presently provided. The holder rotates about its central axis, which translates to workpieces moving in orbit around this axis. A single abrasive wire, or multiple turns of wire stretched tightly between wire guides, is then contacted with the rotating holder to slice the workpieces.
摘要:
The present invention is a slicing method and a wire saw apparatus including winding a wire around a plurality of grooved rollers and pressing the wire against an ingot to be sliced into wafers while supplying a slurry for slicing to the grooved rollers and causing the wire to travel in a reciprocating direction, in which the ingot is sliced with controlling a temperature of the ingot by supplying a slurry for adjusting an ingot temperature to the ingot independently from the slurry for slicing while the slurry for adjusting an ingot temperature is supplied to the ingot only at the exit side of the wire caused to travel in the reciprocating direction. As a result, there is provided a method and a wire saw apparatus in which rapid cooling of an ingot especially in a time close to end of slicing of the ingot can be alleviated, consequently degradation of a nano-topography can be suppressed, and further high-quality wafers having a uniform thickness can be sliced when slicing the ingot by using a wire saw.
摘要:
To provide a multi-wire saw that, at the start of cutting of an ingot, prevents a wire from being displaced in grooves of guide rollers due to the wire being lifted. A wire is wound around a plurality of wire guide rollers to be positioned in a feeding direction of an ingot, and in this state, a wire-lifting restraining member that is a body of rotation and restrains the wire from being lifted by being brought into contact with the wire is disposed near the wire guide rollers.
摘要:
Cutting fluids for brittle materials, e.g., silicon ingot, comprise, in weight percent: A. 70-99% polyalkylene glycol (PAG), e.g., polyethylene glycol; B. 0.01-10% PAG-grafted polycarboxylate; and C. 0-30% water. These cutting fluids are used with abrasive materials, e.g., silicon carbide (SiC), to form cutting slurries. The slurry is sprayed on the cutting tool, e.g., a wire saw, to cut a brittle work piece, e.g., a silicon ingot.
摘要翻译:用于脆性材料例如硅锭的切削液包含重量百分比:A.70-99%的聚亚烷基二醇(PAG),例如聚乙二醇; B. 0.01-10%PAG接枝的聚羧酸酯; 和0-30%的水。 这些切削液与研磨材料(例如碳化硅(SiC))一起使用以形成切割浆料。 将浆料喷涂在切割工具,例如线锯上,以切割脆性工件,例如硅锭。
摘要:
There is provided a fixed abrasive wire having abrasives fixed thereon with a superior fixing strength. The abrasives are fixed on the wire by electroplating in which the wire is subjected to a degreasing step, an acid cleaning step, a rinsing step and an electroplating step sequentially. A plating liquid used in the electroplating step contains a nickel-containing organic acid or a nickel-containing inorganic acid, a leveling agent, and the abrasives. It is a feature that a plated coat being over the top of each of the abrasives has a smaller thickness than a theoretical value.
摘要:
The present invention is a wire saw in which a wire is wound around a plurality of grooved rollers, the workpiece is sliced into wafers by causing the wire to travel and pressing the workpiece against the wire while a slurry is supplied to the grooved rollers, the wire saw controlling in such a manner that the workpiece is sliced while a supply temperature of the slurry is increased from the start to the end of slicing the workpiece. As a result, there is provided a wire saw in which Warp of the workpiece to be sliced can be improved by suppressing a decrease in a temperature of the workpiece in the vicinity of the slicing end portion of the workpiece and by making an increase in displacement of the grooved roller during slicing straight, that is, by making the slicing trajectory depicted in the workpiece close to a straight line.
摘要:
The present invention provides a method for slicing a silicon single crystal ingot having a plane direction (110) by a wire saw to manufacture a (110) silicon wafer, wherein slicing is performed in such a manner that each angle formed between a traveling direction of a wire in the wire saw and a [−112 ] direction and a [1-12] direction in the (110) silicon single crystal ingot or a direction crystallographically equivalent to the directions exceeds 30°. As a result, the method for manufacturing the (110) silicon wafer that can suppress occurrence of breaking at the time of slicing and improve a production yield ratio can be provided.