Abstract:
This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention preferably comprise an elastomeric polyolefin resin and a high pressure low density type resin.
Abstract:
The invention relates to an elastomeric compound comprising at least one olefinic elastomer comprising ethylene, an α-olefin, from 1 to 7 wt % vinyl norbornene and from 0 to 15 wt % of a second non-conjugated polyene, wherein the wt % are related to the total weight of ethylene, α-olefin, vinyl norbornene and the second non-conjugated polyene, and which elastomer has long chain branching corresponding with Δδ 30, wherein Sb is the slope in graph of ln(ac) versus Φ, in which ac is the factor along which the low frequency part (ω
Abstract:
The present invention relates to a method to produce highly branched polymers with a polyolefin backbone structure of ethylene and precise control of the nature of the branching. In particular, the distribution of branch length and number of branches can be more precisely controlled via the polymerization method of the present invention. The method comprises using anionic chemistry to make unsaturated polydienes with a well-defined, highly-branched structure, and then hydrogenating these polydienes to form highly branched or dendritic saturated hydrocarbon polymers. Highly branched or dendritic polyethylene, ethylene-propylene copolymer and atactic polypropylene are among the saturated hydrocarbon polymers that can be anionically synthesized via the proper selection of diene monomer type, coupling agent, and hydrogenation conditions. These polymers find application in injection molding and extrusion processes as a minor additive for improving processability of linear polyolefins by delaying the onset of melt fracture, and correspondingly increasing melt throughput rates.
Abstract:
A polyolefin polymer comprising one or more terminal polymerizable methacryloyl groups (i.e. tethered to the main body of the polymer) and a novel process for preparing same are herein disclosed. A hyperbranched polyethylene polymer and a process for preparing same are also disclosed. The polymer is prepared by a novel one-pot copolymerization reaction of an olefin, such as ethylene, and a heterobifunctional comonomer comprising a methacryloyl group, catalyzed by a late transition metal α-diimine catalyst which is selectively non-reactive towards methacryloyl groups. The process allows for preparation of polymers with various chain topologies, including linear, branched, and hyperbranched topologies. The terminal methacryloyl groups within the polymer are reactive in further polymerization reactions. Thus, the polymer may be used in materials and applications which require cross-linking or further polymerization, for example, UV/thermal/radical curable crosslinkers for use in thermoset applications.
Abstract:
A one-pot polymerization process of preparing long chain branching polymers is provided. Also described is a “T” reagent that serves as a link between main and side chains of an inventive long chain branching polymer. A “T” reagent has at least two functionalities, serving as both co-monomer and chain transfer reaction agent. Optionally, a copolymerization reaction between an alpha-olefin and “T” reagent takes place initially to incorporate some “T” molecules in the polyolefin main chain, and the incorporated “T” units then behave as chain transfer agents for reacting with the propagating polyolefin chains to form side chains. In a particular embodiment, a polymerization process for preparing long chain branching polyethylene (LCBPE) and long chain branching polypropylene (LCBPP) is detailed.
Abstract:
This invention relates to a polymer comprising one or more C3 to C40 olefins, optionally one or more diolefins, and less than 15 mole % of ethylene, where the polymer has: a) a Dot T-Peel of 1 Newton or more; and b) a branching index (g′) of 0.95 or less measured at the Mz of the polymer; c) an Mw of 100,000 or less. This invention also relates a polymer comprising one or more C3 to C40 olefins where the polymer has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) a branching index (g′) of 0.95 or less measured at the Mz of the polymer; c) a Mw of 10,000 to 100,000; and d) a heat of fusion of 1 to 70 J/g. This invention also relates a polymer comprising one or more C3 to C40 olefins where the polymer has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) a branching index (g′) of 0.98 or less measured at the Mz of the polymer; c) a Mw of 10,000 to 60,000; d) a heat of fusion of 1 to 50 J/g. This invention also relates to a homopolypropylene or a copolymer of propylene and up to 5 mole % ethylene having: a) an isotactic run length of 1 to 30 (isotactic run length “IRL” is defined to be the percent of mmmm pentad divided by 0.5×percent of mmmr pentad) as determined by Carbon 13 NMR, preferably 3 to 25, more preferably 4 to 20, b) a percent of r dyad of greater than 20%, preferably from 20 to 70% as determined by Carbon 13 NMR, and c) a heat of fusion of 70 J/g or less, preferably 60 J/g or less, more preferably between 1 and 55 J/g, more preferably between 4 and 50 J/g. This invention further relates to a process to produce an olefin polymer comprising: 1) selecting a first catalyst component capable of producing a polymer having an Mw of 100,000 or less and a crystallinity of 5% or less at selected polymerization conditions; 2) selecting a second catalyst component capable of producing polymer having an Mw of 100,000 or less and a crystallinity of 20% or more at the selected polymerization conditions; 3) contacting the catalyst components in the presence of one or more activators with one or more C3 to C40 olefins, at the selected polymerization conditions in a reaction zone; 4) obtaining the polymer. This invention further relates to a continuous process to produce a branched olefin polymer comprising: 1) selecting a first catalyst component capable of producing a polymer having an Mw of 100,000 or less and a crystallinity of 5% or less under selected polymerization conditions; 2) selecting a second catalyst component capable of producing polymer having an Mw of 100,000 or less and a crystallinity of 20% or more at the selected polymerization conditions; 3) contacting the catalyst components in the presence of one or more activators with one or more C3 to C40 olefins, and, optionally one or more diolefins; 4) at a temperature of greater than 100° C.; 5) at a residence time of 120 minutes or less; 6) wherein the ratio of the first catalyst to the second catalyst is from 1:1 to 50:1; 7) wherein the activity of the catalyst components is at least 100 kilograms of polymer per gram of the catalyst components; and wherein at least 20% of the olefins are converted to polymer.
Abstract:
Disclosed is a polyethylene composition. The composition comprises single-site multimodal resin A and single-site multimodal resin B, wherein resin A differs from resin B in molecular weight, in monomeric composition, in density, in long chain branch concentration or distribution, or in combinations thereof. Disclosed is also a method for making the polyethylene composition. The method comprises polymerizing, in the presence of two or more single-site catalysts, ethylene or its mixture with a C3-C10 α-olefin to form a first multimodal resin and continuing the polymerization in the presence of the same catalysts but in a different hydrogen concentration, in a different monomer composition, or at a different temperature to form a second multimodal resin.
Abstract:
The present invention discloses articles having excellent dimensional stability, solid state mechanical properties and barrier properties that are produced with a polyethylene resin prepared with a catalyst system based on a bridged bisindenyl ligand.
Abstract:
This invention relates to a process to polymerize olefins comprising contacting, in a polymerization system, olefins having three or more carbon atoms with a catalyst compound, activator, optionally comonomer, and optionally diluent or solvent, at a temperature above the cloud point temperature of the polymerization system and a pressure no lower than 10 MPa below the cloud point pressure of the polymerization system, where the polymerization system comprises any comonomer present, any diluent or solvent present, the polymer product, where the olefins having three or more carbon atoms are present at 40 weight % or more.
Abstract:
Processes for polymerizing propylene. About 40 wt % to about 80 wt % propylene monomer, based on total weight of propylene monomer and diluent, and about 20 wt % to about 60 wt % diluent, based on total weight of propylene monomer and diluent, can be fed into a reactor. The propylene monomer can be polymerized in the presence of a metallocene catalyst and an activator within the reactor at a temperature of about 80° C. or more and a pressure of about 13 MPa or more to produce a polymer product in a homogenous system. About 20 wt % to about 76 wt % (preferably About 28 wt % to about 76 wt %) propylene monomer, based on total weight of the propylene monomer, diluent, and polymer product, can be present at the reactor exit at steady state conditions.