Abstract:
Asbestos-containing hazardous waste materials are known causes of cancer and other serious diseases. By the subject process, asbestos-containing wastes are rendered harmless by altering the physical form of the fibers, by (i) melting the asbestos, and by (ii) incorporating the molten asbestos into the slag phase produced by the partial oxidation of ash-containing liquid hydrocarbonaceous fuel and/or solid carbonaceous fuel. Further, gaseous mixtures comprising H.sub.2 +CO e.g. synthesis gas, reducing gas, or fuel gas, are simultaneously produced.
Abstract:
A process for the gasification of coal to product synthesis gas is disclosed, the process being characterized by passage of product gas stream containing sticky or molten particles upward from the gasification zone and quenching of the product gas stream and particles in a quench zone coated or lined internally with titanium diboride.
Abstract:
An aqueous dispersion of unreacted particulate petroleum coke substantially comprising carbon and containing a small amount of ash substantially comprising vanadium constituents and other materials from a process for the partial oxidation of petroleum coke to produce synthesis gas is mixed with C.sub.4 to C.sub.8 acyclic and/or cyclic alkanols and a frothing agent. After pH adjustment, if necessary, the mixture is subjected to aeration with or without mechanical agitation in a froth flotation zone. About 60 to 95 wt. % of the unconverted particulate petroleum coke (basis carbon) particles float in the froth layer that is formed. The remainder of the unconverted petroleum coke comprising coarser particles is suspended in a bottom aqueous dispersion on which the froth layer floats. In addition, selective separation of the vanadium constituents in the unconverted petroleum coke ash takes place. The vanadium content of the ash in the floated portion of unconverted petroleum coke is unexpectedly decreased about 40 to 80 weight percent. Simultaneously, the vanadium content of the ash in the unconverted petroleum coke suspended in the bottom layer of aqueous dispersion is unexpectedly increased about 20 to 60 weight percent. Water may be recovered from this aqueous dispersion and recycled to the gas quench cooling and scrubbing zones. At least portions of the unconverted particulate petroleum coke from the foam layer and the bottom layer are recycled to the partial oxidation gas generator and to a vanadium recovery zone, respectively. By the subject process, the vanadium content in the recycle stream of unconverted petroleum coke to the gas generator is reduced. The life of the refractory lining of the gas generator is thereby extended.
Abstract:
Synthesis gas is produced by the partial oxidation of a fuel feedstock comprising sulfur-containing petroleum coke and/or heavy liquid hydrocarbonaceous fuel and having a nickel and iron-containing ash in a free-flow refractory lined partial oxidation reaction zone. The production of toxic nickel subsulfide (Ni.sub.3 S.sub.2) in said slag is prevented, and there is a substantial reduction in the concentration of H.sub.2 S+COS in the raw product gas stream by introducing an iron-containing additive into the reaction zone along with the feed. The weight ratio of iron-containing additive to ash in the fuel feedstock is in the range of about 0.5 to 10.0. The weight ratio of iron to nickel in said mixture of iron-containing additive and fuel feedstock is greater than 0.33. The additive combines with at least a portion of the nickel and iron constituents and sulfur found in the feedstock to produce a very fluid sulfide phase of iron and nickel, and an Fe, Ni alloy phase. In another embodiment, a minor amount of a calcium compound is included with the iron-containing additive only at startup to reduce the softening temperature of the iron-containing addition agent. By this method, the molten slag produced is free from toxic Ni.sub.3 S.sub.2 and has a comparatively reduced viscosity. Further, the slag may be readily removed from the gas generator at a lower temperature and may be disposed of without contaminating the environment. Further, the life of the refractory lining is extended.
Abstract:
Synthesis gas is produced by the partial oxidation of a feedstock comprising petroleum coke and/or heavy liquid hydrocarbonaceous fuel containing sulfur and having an ash that contains nickel, vanadium and a comparatively high level of silicon. An iron and calcium-containing additive is introduced into the reaction zone along wth the feed. Separate portions of the additive (i) combine with a portion of the nickel, calcium and sulfur to generate a liquid phase washing agent that collects and transports out of the gas generator a portion of the vanadium-containing oxide laths and spinels and other ash components; and (ii) combine with a portion of the nickel, calcium and silicon to generate a liquid oxide-silicate phase that fluxes e.g. dissolves substantially all of the remaining portion of said vanadium-containing oxide laths and spinels and other ash components. In another embodiment, a minor amount of an additonal material selected from the group of elements consisting of magnesium, chromium, manganese, and mixtures thereof is included in the iron and calcium-containing additive. In still another embodiment, the iron and calcium-containing additive is uniformly dispersed in petroleum coke having a nickel and vanadium-containing ash. By this method two types of molten slag having reduced viscosities and containing the nickel and vanadium-containing impurities from the feedstock are readily removed from the gas generator at a lower temperature. Further, the life of the refractory lining is extended.
Abstract:
A partial oxidation process for the production of a stream of mixed gases comprising H.sub.2 and CO. An aqueous particulate solid carbonaceous fuel slurry feedstream is preheated by indirect heat exchange with a process-derived stream of skimmed gases substantially comprising H.sub.2 O. The aqueous carrier of the slurry is vaporized by introducing superheated steam directly into the slurry pipeline. A suspension of particulate solid carbonaceous fuel entrained in a gaseous mixture substantially comprising steam e.g. about 90 to 99.9 wt. % H.sub.2 O and about 0.1 to 10 wt. % of a CO.sub.2 -containing gas mixture is produced. The suspension of solid fuel in the gaseous mixture is then separated in a skimming operation into an overhead gas stream substantially comprising steam, as previously described, and a bottom stream comprising particulate solid carbonaceous fuel with the remainder of said gaseous mixture. The bottom stream from the skimming operation is introduced into the reaction zone of a partial oxidation gas generator in admixture with a free-oxygen containing gas and with or without a temperature moderator where a gaseous stream comprising H.sub.2 +CO is produced. In one embodiment, the temperature of the suspension of solid carbonaceous fuel feed stream entering the partial oxidation reaction zone by way of a burner is monitored. An increase in temperature would flag the back-flow of synthesis gas or oxygen into the burner. When this happens, the feedlines to the burner and the overhead gas stream from the cyclone separator may be automatically shut down to prevent thermal damage to the system.
Abstract:
A partial oxidation control system for continuously producing synthesis gas, fuel gas or reducing gas in which one process fuel is replaced by a different fuel without shutting down or depressurizing the gas generator. Suitable burners for introducing the feedstreams into the gas generator comprise a central conduit means radially spaced from a concentric coaxial outer conduit having a downstream exit nozzle, and providing a coaxial annular passage means therebetween. The central conduit means may be retracted upstream from the burner face a distance of about 0 to 12 and preferably 3 to 10 times the minimum diameter of the central exit orifice. A premix zone is preferably provided comprising one or more, say 2 to 5 coaxial chambers in series where substantial mixing of the reactant streams and optionally volatilization of the slurry medium takes place. A control system is provided for switching the type of reactant fuel stream flowing through either the central conduit means or the annular passage means of the burner and adjusting the flow rates of the reactant stream of free-oxygen containing gas with or without mixture with a temperature moderator and if necessary to introduce supplemental H.sub.2 O into the reaction zone to maintain the temperature and weight ratio H.sub.2 O/fuel in the reaction zone at design conditions for the partial oxidation reaction without stopping production of the product gas.
Abstract:
A carbonaceous material, such as coal, is gasified in a vertically elongated reaction vessel having a lower portion, an upper portion, and a re-entrainment zone which is located above the upper portion. The effective diameter of the upper portion of the vessel is larger than that of the lower portion of the vessel and the re-entrainment zone. A gasification agent is passed upwardly through the vessel at a rate sufficient to entrain the coal and fluidize a heat-transfer material in the lower portion of the vessel. The gasification agent reacts with the coal to form a hot char and a gaseous product, with the necessary heat being supplied by the heat-transfer material. In this process, the heat-transfer material substantially flows downwardly in the reaction vessel, in a fluidized state or an unfluidized state through the upper portion of the vessel and in a fluidized state through the lower portion of the vessel. The coal substantially flows upwardly in the reaction vessel, in an entrained state through the lower portion of the vessel and the re-entrainment zone, and in a fluidized state through the upper portion of the vessel. An advantage of this process is that the upper portion serves to increase the residence time of the carbonaceous solids in the reaction vessel thereby increasing yields and lowering the average height of the reaction vessel, and the sensible heat is extracted from the product gas before it leaves the reactor.
Abstract:
A method for starting up a pressurized partial oxidation gas generation system comprising a gas generator and gas purification train without atmospheric pollution. The method comprises isolating and prepressuring the gas purification train to a pressure of at least 50 percent of normal operating pressure, starting the gas generator and autogenously increasing the pressure in the gas generator to the pressure of the gas purification train before establishing communication with the gas purification train to permit flow of gas through the gas purification train. Purified gases discharged from the gas purification train may be burned in a flare without atmospheric pollution.
Abstract:
A process is disclosed for gasifying solid carbonaceous material at elevated temperature and pressure to produce a gas consisting of carbon monoxide and hydrogen, which comprises forming a slurry at atmospheric pressure of the carbonaceous material with a liquid having a specific gravity of from 1.1 to 1.9, a boiling temperature of at least 70.degree. F., a latent heat of vaporization less than about 200 BTU per pound, a critical temperature which is less than the incipient coking temperature of the carbonaceous material, a stability at temperatures up to 600.degree. F., an essentially inert chemical reaction with the carbonaceous material at temperatures less than about 600.degree. F., an immiscibility with water or solubility in water at no more than 5%, and a dissolving ability for hydrogen sulfide at temperatures of from -40 to 250.degree. F., and raising the formed slurry to a pressure of at least the gasification pressure and vaporizing said liquid and gasifying said carbonaceous material, either in the same or in separate steps. Examples of suitable slurrying liquids are: carbon tetrachloride, carbon disulfide, trichloroethylene, bromoethane, chlorobenzene, methane dichloride, chloroform, or mixtures thereof.