Abstract:
The invention relates to an extrados structural element made from an aluminum, copper and lithium alloy and a method for manufacturing same. In the method according to the invention, an alloy with composition (in wt %) 4.2 to 5.2 Cu, 0.9 to 1.2 Li, 0.1 to 0.3 Ag, 0.1 to 0.25 Mg, 0.08 to 0.18 Zr, 0.01 to 0.15 Ti, optionally up to 0.2 Zn, optionally up to 0.6 Mn, an Fe and Si content level less than or equal to 0.1% each, and other element with a content level less than or equal to 0.05% each and 0.15% in total, the aluminum is poured, homogenized, deformed hot and optionally cold, placed in a solution at a temperature of at least 515° C., pulled from 0.5 to 5% and annealed. The combination in particular of the magnesium, copper and manganese content with the temperature in solution can reach a very advantageous elasticity under compression limit. Thus, the products according to the invention having a thickness of at least 12 mm have an elasticity under compression limit in the longitudinal direction of at least 645 MPa and an elongation in the longitudinal direction of at least 7%.
Abstract:
An H-section steel has a predetermined chemical composition in which a thickness of a flange is 100 mm to 150 mm, at a strength evaluation position an area fraction of bainite in a steel structure is 80% or more, yield strength or 0.2% proof strength is 450 MPa or more, tensile strength is 550 MPa or more and 680 MPa or less, at a toughness evaluation position an average austenite grain size in the steel structure is 150 μm or less, and (Mg, Mn)S having a particle size of 0.005 μm to 0.5 μm is included at a density of 1.0×105 pieces/mm2 to 1.0×107 pieces/mm2.
Abstract translation:H型钢具有预定的化学成分,其中凸缘的厚度为100mm至150mm,在强度评估位置,钢结构中的贝氏体的面积分数为80%以上,屈服强度或0.2%的证明 强度为450MPa以上,拉伸强度为550MPa以上且680MPa以下,在韧性评价位置,钢结构体的平均奥氏体晶粒尺寸为150μm以下,具有粒子的(Mg,Mn)S 以1.0×105个/ mm 2〜1.0×107个/ mm 2的密度包含0.005μm〜0.5μm的尺寸。
Abstract:
A corrosion resistant strip is disclosed. The strip comprises a core, and an interlayer adapted to be located between the core and an optional Al—Si based clad. The interlayer has a composition essentially consisting of (in percentages by weight): Si≦0.9%, Fe≦0.7%, Cu≦0.5%, Mn0.5-1.8%, Mg≦0.7%, Zn≦4.0%, Ni≦1.5%, elements selected from group IVb, Vb, and/or VIb of the periodic table ≦0.3% each and ≦0.5% in total ≦0.05 wt % each and ≦0.15% in total, of unavoidable impurity elements, balance Al. The core is more noble than the interlayer after brazing. The interlayer exhibits a volume fraction of a texture component of at least 30%.
Abstract:
Provided are: a high-strength hot-dip galvanized steel sheet in which bending workability of the high-strength hot-dip galvanized steel sheet is improved, and in which strength difference between a center part and end parts in the sheet width direction is reduced; and a method for manufacturing a high-strength hot-dip galvanized steel sheet. The steel sheet is a hot-dip galvanized steel sheet having a hot-dip galvanizing layer on a surface of a base steel sheet containing: C, Mn, P, S, and Al; Ti and B in amounts satisfying equation (1); and N; and Si as needed; the remainder comprising iron and unavoidable impurities; the metallographic structure of the base steel sheet having martensite, bainite, and ferrite, the ratios of each with respect to the overall metallographic structure being 50 area % or more of the martensite, 15-50 area % of the bainite, and 5 area % or less of the ferrite, 0.005×[Mn]+0.02×[B]1/2+0.025≦[Ti]≦0.15. (1)
Abstract:
A flywheel energy storage system incorporates various embodiments in design and processing to achieve a very high ratio of energy stored per unit cost. The system uses a high-strength steel rotor rotating in a vacuum envelope. The rotor has a geometry that ensures high yield strength throughout its cross-section using various low-cost quenched and tempered alloy steels. Low-cost is also achieved by forging the rotor in a single piece with integral shafts. A high energy density is achieved with adequate safety margins through a pre-conditioning treatment. The bearing and suspension system utilizes an electromagnet that off-loads the rotor allowing for the use of low-cost, conventional rolling contact bearings over an operating lifetime of several years.
Abstract:
A flywheel energy storage system incorporates various embodiments in design and processing to achieve a very high ratio of energy stored per unit cost. The system uses a high-strength steel rotor rotating in a vacuum envelope. The rotor has a geometry that ensures high yield strength throughout its cross-section using various low-cost quenched and tempered alloy steels. Low-cost is also achieved by forging the rotor in a single piece with integral shafts. A high energy density is achieved with adequate safety margins through a pre-conditioning treatment. The bearing and suspension system utilizes an electromagnet that off-loads the rotor allowing for the use of low-cost, conventional rolling contact bearings over an operating lifetime of several years.
Abstract:
A shape memory alloy element is disclosed that is configured to undergo a graded phase change along a dimension of the shape memory alloy element in response to thermal stimulus. This graded phase change produces a graded displacement response of the shape memory element.
Abstract:
A method and a device are provided for the thermomechanical treatment of seamless steel rings produced on radial-axial ring rolling machines, particularly rings of fine grain steel, heat-treatable steel, case hardened steel, or austenitic steel, preferably of steel tower flanges for wind turbine generators. The ring blank is inserted into the ring rolling machine at a temperature in the range of 900° C. to 1150° C. and is rolled to an outer diameter preferably in the range of 0.2 m to 10 m by a hot forming process. The hot ring (1) is quickly cooled down by a controlled process directly following the rolling, without secondary heating, from a temperature over the conversion temperature in the austenite range to a temperature below 400° C. The device includes a dipping basin filled with cooling liquid (8) or an unfilled cooling container, and a carrier (5) that can be lowered with a hoisting device (4), the rolled ring (1) lying on the carrier. Pressure nozzles (13) are arranged in the dipping basin or the cooling container (2) on one or several ring lines (11), in an equal distribution, for the targeted application of the cooling liquid (8) onto at least one of the ring-shaped surfaces of the ring (1). Measurement of the ring temperature before and/or after the cooldown is carried out, preferably, with a radiation pyrometer.
Abstract:
A steel sheet, including: as chemical components, by mass %, 0.05% to 0.35% of C; 0.05% to 2.0% of Si; 0.8% to 3.0% of Mn; 0.01% to 2.0% of Al; equal to or less than 0.1% of P; equal to or less than 0.05% of S; equal to or less than 0.01% of N; and the balance including iron and inevitable impurities, wherein an area ratio of equal to or higher than 50% of a total of a ferrite phase, a bainite phase, and a tempered martensite phase is contained, an area ratio of equal to or higher than 3% of a retained austenite phase is contained, and crystal grains of the retained austenite phase having a number ratio of equal to or higher than 50% satisfy Expression 1, assuming carbon concentration at a position of center of gravity is Cgc and a carbon concentration at a grain boundary is Cgb.
Abstract:
UHC lightweight structural steel with improved scaling resistance, comprising the composition in % by weight C: 1 to 1.6, Al: 5 to 10, Cr: 0.5 to 3, Si: 0.1 to 2.8, the remainder iron and customary impurities accompanying steel, and a method for producing components hot-formed from this in air, wherein hot-forming temperatures of from 800 to 1050° C. are used, depending on the Si content.