Abstract:
Multistrand metal cord of K×(L+M) construction, which can especially be used for reinforcing tire belts for industrial vehicles, consisting of K elementary strands assembled in a helix, with a helix pitch PK, each elementary strand: consisting of a cord (10) having two layers (Ci, Ce) of L+M construction, rubberized in situ, comprising an inner layer (Ci) consisting of L wires (11) of diameter d1, L varying from 1 to 4, and an outer layer (Ce) of M wires (12), M being equal to or greater than 5, of diameter d2, which are assembled in a helix with a pitch p2 around the inner layer (Ci); and having the following characteristics (d1, d2 and p2 being expressed in mm): 0.10
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. incorporating a composition made of rubber in the uncrosslinked state referred to as “filling rubber”, the said cable comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a first sheathing step in which the core (C1) is sheathed with the filling rubber; a first assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named “core strand” (C1+C2); downstream of the said assembling point, a second sheathing step in which the core strand (C1+C2) is sheathed with the filling rubber; a second assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2) thus sheathed; a final twist-balancing step.
Abstract:
Metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d1 wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), wherein said cord has the following characteristics (d1, d2, p1 and p2 are expressed in mm): 0.20
Abstract:
An embodiment of a wellbore cable comprises a cable core, at least a first armor wire layer comprising a plurality of strength members and surrounding the cable core, and at least a second armor wire layer comprising a plurality of strength members surrounding the first armor wire layer, the second armor wire layer covering a predetermined percentage of the circumference of the first armor wire layer to prevent torque imbalance in the cable.
Abstract:
A steel cord adapted for the reinforcement of elastomers includes: a core steel filament with a diameter dc and coated with a polymer, six intermediate steel filaments with a diameter di smaller than or equal to dc, the intermediate steel filaments being twisted around the core steel filament, ten to eleven outer steel filaments with a diameter do, smaller than or equal to di wherein these outer steel filaments are twisted around the intermediate steel filaments, and the outer steel filaments are preformed in order to allow rubber penetration inside the cord. The core steel filament, the intermediate steel filaments, and the outer steel filaments all have a tensile strength of at least 2600 MPa. The cord has an outer diameter D according to the following formula: D≦dc+2×di+2×do+0.1 mm, wherein all diameters are expressed in millimeters (mm).
Abstract translation:适用于增强弹性体的钢丝绳包括:具有直径d c c的芯钢丝,并涂覆有聚合物,六个中等长度的细长丝,直径小于或等于 中间钢丝缠绕在芯钢丝上,十到十一个直径小于或等于的钢丝, 其中这些外部钢丝围绕中间钢丝绞合,并且外部钢丝被预成型以允许橡胶在帘线内渗透。 芯钢丝,中间钢丝和外钢丝均具有至少2600MPa的拉伸强度。 帘线具有根据以下公式的外径D:D <= D i> + 2×2×2×2×↓+ 0.1mm,其中 所有直径以毫米(mm)表示。
Abstract:
An elevator rope includes: an inner layer rope; an inner layer covering body of resin and covering the outer periphery of the inner layer rope; an outer layer located in the outer periphery of the inner layer covering body; and an outer layer covering body of a high-friction resin material and covering the outer periphery of the outer layer. The inner layer rope has inner layer strands. The outer layer has outer layer strands and adhesive layers glued to the outer periphery of the outer layer strands. The inner layer strands have exposed portions partially exposed through the outer periphery of the inner layer covering body, with the exposed portions being in direct contact with the outer layer.
Abstract:
A steel cord according to the invention comprises a metal core strand (11) and adjacent layer of steel elements (13). Between metal core strand (11) and adjacent layer of steel elements (13), a polymer layer (16) with a minimum thickness of more than 0.02 mm is provided. These steel cords are to be used to reinforce off-the-road tires or conveyor belts.
Abstract:
A reinforcement for a building works structure comprising an assembly of solid wires. The wires are mutually parallel to form a bundle and the reinforcement comprises a sheath made of plastic material enclosing the bundle and providing it with cohesion.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel filaments 115 which are then stranded in case of a single layer steel cord, the uncured rubber is coated on all of plural core filaments 329 which are then stranded along with outer layer filaments 330 in the same direction at the same pitch in case of a 2-layer steel cord of 1 stranding process, and the uncured rubber is coated on all or 2 to 4 core filaments 218 or on at least one of 3 or 4 steel filaments 408, 408null to form a core strand and outer layer filaments 410, 410null are stranded therearound in case of 2-layer steel cord of 2 stranding process. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
A PC strand is formed by twisting peripheral wires made of deformed PC steel wires around a core, and allowing rust inhibitive material of thermoplastic resin to permeate into voids defined among the core and peripheral wires by use of an extruder. Since at least one of the core and peripheral wires is made of a deformed PC steel wire having an uneven outer surface, the thermoplastic resin can smoothly permeate deep into the inside of the PC strand.