Abstract:
Wire-coated graphite electron emitters are disclosed. These field emitters find particular usefulness in field emitter cathodes, display panels and lighting devices. These graphite field emitters can be formed by coating a paste comprised of graphite and glass frit onto the wire, firing the paste and bombarding the fired product with an ion beam.
Abstract:
A process is provided for forming sharp asperities useful as field emitters. The process comprises patterning and doping a silicon substrate. The doped silicon substrate is anodized. The anodized area is then used for field emission tips. The process of the present invention is also useful for low temperature sharpening of tips fabricated by other methods. The tips are anodized, and then exposed to radiant energy and the resulting oxide is removed.
Abstract:
Electron emitters and a method of fabricating emitters which have a concentration gradient of impurities, such that the highest concentration of impurities is at the apex of the emitters, and decreases toward the base of the emitters. The method comprises the steps of doping, patterning, etching, and oxidizing the substrate, thereby forming the emitters having impurity gradients.
Abstract:
A field emission type cold cathode device comprises a substrate, and a metal plating layer formed on the substrate, the metal plating layer contains at least one carbon structure selected from a group of fullerenes and carbon nanotubes, the carbon structure is stuck out from the metal plating layer and a part of the carbon structure is buried in the metal plating layer.
Abstract:
Titanium aluminum nitrogen (“Ti—Al—N”) is deposited onto a semiconductor substrate area to serve as an antireflective coating. For wiring line fabrication processes, the Ti—Al—N layer serves as a cap layer which prevents unwanted reflection of photolithography light (i.e., photons) during fabrication. For field emission display devices (FEDs), the Ti—Al—N layer prevents light originating at the display screen anode from penetrating transistor junctions that would hinder device operation. For the wiring line embodiment, an aluminum conductive layer and a titanium-aluminum underlayer are formed beneath the antireflective cap layer. The Ti—Al underlayer reduces the shrinkage which occurs in the aluminum conductive layer during heat treatment.
Abstract:
A process is provided for forming sharp asperities, useful as field emitters. The process comprises: patterning and doping a silicon substrate. The doped silicon substrate is anodized. The anodized area is then used for field emission tips. The process of the present invention is also useful for low temperature sharpening of tips fabricated by other methods. The tips are anodized, and then exposed to radiant energy, and the resulting oxide is removed.
Abstract:
A method for fabricating sharp asperities. A substrate is provided which has a mask layer disposed thereon, and a layer of micro-spheres is disposed superjacent the mask layer. The micro-spheres are for patterning the mask layer. Portions of the mask layer are selectively removed, thereby forming circular masks. The substrate is isotropically etched, thereby creating sharp asperities.
Abstract:
Electron emitters and a method of fabricating emitters which have a concentration gradient of impurities, such that the highest concentration of impurities is at the apex of the emitters, and decreases toward the base of the emitters. The method comprises the steps of doping, patterning, etching, and oxidizing the substrate, thereby forming the emitters having impurity gradients.