Abstract:
An electromagnetic shield plate comprising a geometric pattern having a line width of 10 &mgr;m to 80 &mgr;m and a line interval of 50 to 250 mesh on a surface of a transparent substrate, provides good visibility and excellent electromagnetic shielding, and is easy to manufacture and permits the fabrication of a large-size plate in a simple manner.
Abstract:
An electromagnetie-wave shielding and light transmitting plate suitable for an electromagnetic-wave shielding filter for a PDP, which has good electromagnetic-wave sheilding efficiency and light transparency, can provide distinct pictures, and can yet be easily made, is provided. The electromagnetic-wave shielding and light transmitting plate is formed of two transparent base plates and an adhesive layer made of EVA in which conductive particles are dispersed and mixed. The base plates are integrally bonded together by the adhesive layer. Adjusting the particle size and the dispersed amount of the conductive particles enables the manufacture of plates having desired electromagnetic-wave shielding efficiency, in addition, good light transparency, without moire phenomenon. Using an adhesive sheet formed by mixing the conductive particles into the EVA facilitates the manufacture of the aforementioned plate.
Abstract:
An electromagnetic-wave shielding and light transmitting plate is provided which is formed of two transparent base plates and a conductive mesh member. The conductive mesh member 3 is interposed between two transparent base plates and is bonded together to form an integrated member and the margins of the conductive mesh member are folded along the peripheral edges of one of the transparent base plates and are secured to the transparent base plate with a conductive adhesive tape. This structure allows easy assemblage of the electromagnetic-wave shielding and light transmitting plate to a body of an equipment and provides uniform and low-resistant conduction between the electromagnetic-wave shielding and light transmitting plate and the body.
Abstract:
An electromagnetic-wave shielding and light transmitting plate suitable for an electromagnetic-wave shielding filter for a PDP, which has good electromagnetic-wave shielding efficiency and light transparency, can provide distinct pictures, and can yet be easily made, is provided. The electromagnetic-wave shielding and light transmitting plate is formed of two transparent base plates and an adhesive layer made of EVA in which conductive particles are dispersed and mixed. The base plates are integrally bonded together by the adhesive layer. Adjusting the particle size and the dispersed amount of the conductive particles enables the manufacture of plates having desired electromagnetic-wave shielding efficiency, in addition, good light transparency, without moire phenomenon. Using an adhesive sheet formed by mixing the conductive particles into the EVA facilitates the manufacture of the aforementioned plate.
Abstract:
An electromagnetic sheilding bonding film has a substantially transparent base film and an electroconductive metallic material layer geometrically patterned on the base film to have an aperture ratio of 50% or more. A bonding agent layer is placed at least over a part of the plastic base film not covered by the electroconductive metallic material layer and has a predetermined selectively given fluidity.
Abstract:
A method of manufacturing a cover structure is provided. A metal substrate disposed on a carrier is provided. The carrier has a surface, and the metal substrate has a plurality of openings exposing a portion of the surface. A first metal layer is formed on the metal substrate and is conformal with the metal substrate. The first metal layer covers the portion of the surface exposed by the openings. An insulating layer and a second metal layer located on the insulating layer are laminated on the metal substrate. The insulating layer is located between the first metal layer and the second metal layer to cover the first metal layer and fill the openings. The metal substrate and the carrier are removed to expose the first metal layer and define a plurality of cavity regions and a plurality of connecting regions connected with the cavity regions.
Abstract:
A plasma display device is provided. The plasma display device includes a plasma display panel (PDP) which includes an upper substrate on which a plurality of black matrices are formed; and an external light shielding sheet which is disposed at a front of the PDP and includes a base unit and a plurality of pattern units that are formed on the base unit and that have a lower refractive index than the base unit. A distance between a pair of adjacent black matrices is 4-12 times greater than a distance between a pair of adjacent pattern units. Therefore, it is possible for a plasma display device to effectively realize black images and enhance bright room contrast with the aid of an external light shielding sheet which is disposed at a front of a PDP and which absorbs and shields as much external light incident upon the PDP as possible. Also, it is possible to reduce the probability of occurrence of the moire phenomenon and enhance the luminance of images displayed by a PDP by forming a plurality of pattern units on an external light shielding sheet so that the distance between the pair of adjacent pattern units can fall within a predetermined percentage range of the distance between the pair of adjacent black matrices formed on a PDP, or that the width of the pattern units can fall within a predetermined percentage range of the width of black matrices formed on the PDP.
Abstract:
The present invention provides an optical layered body having a good antistatic performance and good optical properties as well as an excellent durability. The present invention provides an optical layered body, comprising: an antistatic layer on a light-transmitting substrate, wherein the antistatic layer is a resin thin film layer containing at least an organic conductive material and a nonconductive polymeric material which is a resin having a glass transition temperature of 60° C. or higher or a resin obtainable by a reaction between a resin having a glass transition temperature of 60° C. or higher and a cross-linking agent.
Abstract:
A pressure sensitive adhesive for sticking together an electromagnetic wave-shielding film and optically functional film, wherein a storage elastic modulus at 70° C. is 7.00×104 Pa or more; and a display panel filter element comprising(1) an electromagnetic wave-shielding film, the film being a laminate of a transparent substrate film, an adhesive for a metal foil, which is applied on one surface of the transparent substrate film, and a metal foil mesh formed on the adhesive for a metal foil,(2) a layer of the pressure sensitive adhesive according to (1), which is applied so as to cover the metal foil mesh of the electromagnetic wave-shielding film, and(3) an optically functional film provided on the pressure sensitive adhesive, are provided. The pressure sensitive adhesive exhibits sufficient adhesive strength, can be filled into the inside of the pores of the metal foil mesh, and does not generate bubbles in a heating treatment.
Abstract:
A coating layer for blocking EMI is disclosed, which comprises a base substrate, and a deposition member formed at one surface of the base substrate, comprising a plurality of repetitive unit films which include metal layers and high refraction layers, wherein any one of the outmost metal layers of the deposition member has a minimum thickness among the metal layers. Also, an optical filter which includes the coating layer and a display apparatus are disclosed.