Abstract:
A thin film magnetic head includes a layered semiconductor body formed of a quantum well layer sandwiched by first and second barrier layers, wherein at least one of the first and second barrier layers includes therein a delta-doped layer that shields the quantum well layer from a surface depletion region extending from the surface of the barrier layer.
Abstract:
A Hall device consists of a single-crystal semiconductor substrate of (110) orientation, an active region formed on the substrate, a pair of input current terminals for passing a predetermined current through the active region, and a pair of output voltage terminals for measuring a potential difference to be produced in a direction orthogonal to the predetermined current flowing between the input current terminals. The surface of the active region is in a (110) plane, to minimize a fluctuation in the offset output of the device due to internal stress and precisely measure a magnetic field. This device is resistive against heat caused by soldering when mounting the device on a system.
Abstract:
A Hall effect sensor of two-dimensional electron gas type comprising, on an insulating substrate, a quantum well structure, a carrier injection layer adjacent to the quantum well structure, of thickness less than 250 .ANG. and having an density per unit area of donors integrated over the whole thickness of the carrier injection layer less than 5.times.10.sup.12 cm.sup.-2, an insulating burial layer deposited on the carrier injection layer, having a conduction band with an energy level greater than the Fermi energy of the sensor and a thickness greater than 200 .ANG.. Applicable to the field of electricity meters and current sensors.
Abstract translation:一种二维电子气体型霍尔效应传感器,包括在绝缘衬底上的量子阱结构,与量子阱结构相邻的载流子注入层,厚度小于250,并且具有供体的单位面积密度 在载流子注入层的整个厚度小于5×10 12 cm -2的情况下,沉积在载流子注入层上的绝缘埋藏层具有能量水平大于传感器的费米能量的导带,并且厚度大于200A 。 适用于电表和电流传感器领域。
Abstract:
Improvements are made in a non-volatile magnetic random access memory. Such a memory is comprised of an array of unit cells, each having a Hall-effect sensor and a thin-film magnetic element made of material having an in-plane, uniaxial anisotropy and in-plane, bipolar remanent magnetization states. The Hall-effect sensor is made more sensitive by using a 1 m thick molecular beam epitaxy grown InAs layer on a silicon substrate by employing a GaAs/AlGaAs/InAlAs superlattice buffering layer. One improvement avoids current shunting problems of matrix architecture. Another improvement reduces the required magnetizing current for the micromagnets. Another improvement relates to the use of GaAs technology wherein high electron-mobility GaAs MESFETs provide faster switching times. Still another improvement relates to a method for configuring the invention as a three-dimensional random access memory.
Abstract:
In an integrable Hall element, which includes a semiconductor layer of a single conductive type, a plurality of current electrodes adapted for being connected to an energy source, and wherein at least one current electrode and two sensor electrodes are located on a surface of the Hall element, and the one current electrode has a first connecting contact forming a first energy source pole, the improvement consists in the one current electrode being approximately located in the center of a line connecting the sensor electrodes. The remaining current electrodes are distributed current electrodes which have a second connecting contact, and a second energy source pole is formed by the distributed current electrodes; the distributed electrodes are so located with respect to the one current electrode so that all currents flowing between the one electrode and the distributed electrodes form a resultant current vector extending in the vicinity of the one current electrode substantially at right angles to the surface of the semiconductor layer.
Abstract:
The heterojunction magnetic field sensor is basically a heterojunction structure forming a two-dimensional electron gas layer having a high carrier mobility at the junction portion of at least two different kinds of semiconductor layers having a different band gap, respectively, and further, at least one semiconductor layer having a quantum well structure is provided adjacent to and in contact with the two dimensional electron gas layer, the energy level of the ground state subband thereof being higher than that of the two-dimensional electron gas layer. This heterojunction magnetic field sensor has a high sensitivity which is not saturated even under a high electric field and provides an enhanced output even under the high electric field.
Abstract:
Two Hall effect devices are formed on a major surface of a silicon single crystal substrate lying in parallel to the (100) crystalline plane and series-connected to form a magnetic sensor. Each of the Hall effect devices has a pair of drive electrodes spaced apart from each other in a direction substantially parallel to the or crystalline axis and held at different potentials for flowing therebetween a drive current in said direction to drive the Hall effect device and a pair of Hall terminals for developing a Hall voltage when exposed to an external magnetic field. A comparator compares the potentials of two selected Hall terminals of the different Hall devices with each other to produce a compared signal. A switching element is connected to one of the Hall devices to control the potential of the Hall terminals to equalize the potentials of the two selected Hall terminals in response to the compared signal. Two non-selected Hall terminals develop positive and negative Hall voltages, respectively, relative to the selected Hall terminals so that the magnetic sensor produces a totalized Hall voltage of the two Hall effect devices.
Abstract:
An inventive Hall element formed from semiconductor material is disclosed. The inventive Hall element comprises a plurality of interconnected portions formed in a common semiconductor layer. Depending on how the portions are interconnected, the Hall element may detect the sum or difference of magnetic field values. The invention enables the realization of very large Hall elements which can be used in electrical meters to measure a magnetic field produced by an electric current.
Abstract:
A magnetic field sensor having a lateral bipolar magnetotransistor incorporating only a single emitter region and whose base region is incorporated as a well in the surface of a silicon substrate of the reverse material conduction type. The P/N junction of the base region with the silicon substrate is reverse biased by means of at least one secondary collector contact. The emitter region must be kept as shallow than 0.5 .mu.m or be so lowly doped with impurity atoms that its resistivity is greater than 100 ohms per square or both. The sensitivity of the magnetic field sensor is approximately 100%/Tesla.
Abstract:
A switching element (e.g., 30) is furnished by an inversion layer (e.g., 55) in a zero resistance state under the influence of a quantizing magnetic field, the inversion layer having a ring geometry. Voltage (e.g., V.sub.o) applied across a pair of localized spaced apart terminals (e.g., 37, 38)--one on a portion of the inner edge of the ring, the other on the outer edge--produces a percolating current in the inversion layer, that is, a current circulating around the ring in a zero resistance state. This percolating current suddenly vanishes when a control voltage is applied to an auxiliary (gate) electrode (e.g., 51), whereby an output voltage (e.g., V.sub.out) previously developed across another pair of localized spaced apart terminals (e.g., 47, 48) on either edge of the ring suddenly also vanishes.