摘要:
An antenna is fabricated using an M-type hexaferrite, such as a tin (Sn) and zinc (Zn) substituted M-type strontium hexaferrite (Sn/Zn-substituted SrM: SrFe12−2xZnxSnxO19), thereby enabling antenna miniaturization, broad bandwidth, and high gain. In one embodiment, an antenna system has a substrate and a chip antenna formed on the substrate. The system also has a conductive radiator contacting the chip antenna, and the chip antenna comprises an M-type strontium hexaferrite for which Fe cations are substituted with tin (Sn) and zinc (Zn) to achieve soft magnetic properties for the antenna. Thus, the coercivity and permeability are lower and higher, respectively, than those of pure SrM. Such fabricated hexaferrite chip antennas have broadband characteristics and show good radiation performance at various frequencies, including in the GHz frequency range.
摘要:
Provided are an antenna device and an electronic device including the same. The antenna device includes a dielectric substrate formed of a transparent material, a mesh grid comprising conducting wires formed on at least one of the plurality of surfaces of the dielectric substrate, a first portion of the mesh grid having a radiation conductor formed by a first plurality of the conducting wires, and a second portion of the mesh grid having a dummy pattern formed by a second plurality of conducting wires, in which the dummy pattern includes at least one discontinuous portions in which portions of the second conducting wires are opened to electrically open the first portion forming the radiation conductor from the mesh grid less the first portion, and the first conducting wires are formed to have a line width that is different from a line width of the second conducting wires.
摘要:
Provided is an antenna structure including a substrate and a driven element, a reflector, and a director, which are disposed on the substrate, and respectively configured to transmit/receive, reflect, and direct an electric wave having a first wavelength. The driven element includes a first area having a first length in a first direction parallel to a top surface of the substrate, and a second area having the first length in the first direction and spaced apart from the first area in the first direction. Each of the first area and the second area is a PIN diode that is formed by doping an upper portion of the substrate.
摘要:
The present disclosure relates to an antenna, comprising (a) substrate; and (b) a composition, comprising, (i) an electrically conductive material; and (ii) a binder; wherein the composition is adjacent to the substrate.
摘要:
A nanoscale solid state terahertz emitter employs a layered half-cylinder associated with a substrate. The half-cylinder is configured with a channel having a pre-determined channel length. The emitter is defined in a three-dimensional frame of reference. The layered half-cylinder includes a conductor layer bonded to the substrate. An insulator layer is bonded to the conductor layer. An arcuate-shaped graphene layer is bonded to the insulator layer along a pre-determined contact length.
摘要:
Composite material, devices incorporating the composite material and methods of forming the composite material are provided. The composite material includes interstitial material that has at least one of a select relative permittivity property value and a select relative permeability property value. The composite material further includes inclusion material within the interstitial material. The inclusion material has at least one of a select relative permeability property value and a select relative permittivity property value. The select relative permeability and permittivity property values of the interstitial and the inclusion materials are selected so that the effective intrinsic impedance of the interstitial material and the inclusion material match the intrinsic impedance of air. Devices made from the composite include metamaterial and/or metamaterial-inspired (e.g., near-field LC-type parasitic) substrates and/or lenses, front-end protection, stealth absorbers, filters and mixers. Beyond the intrinsic, applications include miniature antennas and antenna arrays, directed energy weapons, EMI filters, RF and optical circuit components, among others.
摘要:
There is provided a silver conductive film capable of inexpensively mass-producing conductive circuits, such as antennas for IC tags, which have excellent electrical characteristic and flexibility, by applying a silver particle dispersing solution, which contains 50-70% by weight of silver particles having a mean particle diameter of 20 nm or less, on a substrate by the flexographic printing, and then, calcining the silver particle dispersing solution to produce a silver conductive film, which contains 10-50% by volume of a sintered body of the silver particles and which has a volume resistivity of 3-100 μΩ·cm, a surface resistivity of 0.5Ω/□ or less and a thickness of 1-6 μm.
摘要:
An inspection apparatus of an embodiment includes a transmitting antenna device connected to a transmitting unit including a transmitting device configured to transmit a microwave, and a receiving antenna device connected to a receiving unit including a receiving device. Each of the transmitting antenna device and the receiving antenna device faces a subject to be inspected. The receiving antenna device receives at least one of a microwave transmitted from the transmitting antenna device and penetrating the subject to be inspected, a microwave of which phase has been delayed, and a microwave diffracted in the subject to be inspected. The receiving unit is a directional antenna.
摘要:
Chipless RFID tags (200, 210, 220, 230, 240, 250, 260, 310, 320, 330, 400, 410, 420, 500, 510, 520, 600, 610, and 620) are designed and fabricated from the structures of the nanotube elements and their patterns on a dielectric substrate (202, 311, 401, and 501 etc.) by thin film coating or printing following by a polymer curing process.
摘要:
Nano-antennas with a resonant frequency in the optical or near infrared region of the electromagnetic spectrum and methods of making the nano-antennas are described. The nano-antenna includes a porous membrane, a plurality of nanowires disposed in the porous membrane, and a monolayer of nanospheres each having a diameter that is substantially the same as a diameter of the nanowires. The nanospheres are electrically in series with the nanowires.