摘要:
A nonvolatile memory cell which is highly scalable includes a cell formed in a triple well. A select transistor can have a source which also acts as the emitter of a lateral bipolar transistor. The lateral bipolar transistor operates as a charge injector. The charge injector provides electrons for substrate hot electron injection of electrons onto the floating gate for programming. The cell depletion/inversion region may be extended by forming a capacitor as an extension of the control gate over the substrate between the source and channel of said sense transistor.
摘要:
Certain embodiments include a semiconductor device capable of preventing a retardation of signal transmission between the smallest units, a method for the manufacture thereof, a circuit substrate and an electronic device. Embodiments also include a manufacturing method comprising a laminating step of forming tunnel insulating films 12 and 22, floating gates 14 and 24, dielectric films 16 and 26, control gates 18 and 28 on first and second memory cell areas 10 and 20 formed mutually adjacent to each other on a semiconductor substrate 30, a plurality of impurity area formation steps of forming sources and drains 32, 34, 36 and 38 on the first and second memory cell areas 10 and 20, and forming a connecting area 40 capable of forming an electric connection between one 32 of the source and drain of the first memory cell area 10 and one 36 of the source and drain of the second memory cell area 20. The connecting area 40 is formed to have a lower electric resistance than impurity areas 42 and 44 formed in one of the of impurity area formation steps.
摘要:
Non-volatile memory devices according to embodiments of the invention can include, for example, a semiconductor substrate, a source region, a drain region, an impurity region, a vertical structure, a control gate insulating layer, a control gate electrode, a gate insulating layer, and a gate electrode. The impurity region is in a floating state between the source region and the drain region. The vertical structure is formed of a tunneling layer, a charge trapping layer, and a blocking layer sequentially stacked between the source region and the impurity region. The control gate insulating layer is between the source region and the impurity region and adjacent to the vertical structure. The control gate electrode is formed on the vertical structure and the control gate insulating layer. The gate insulating layer is between the impurity region and the drain region. The gate electrode is formed on the gate insulating layer.
摘要:
Floating gate transistors and methods of forming the same are described. In one implementation, a floating gate is formed over a substrate. The floating gate has an inner first portion and an outer second portion. Conductivity enhancing impurity is provided in the inner first portion to a greater concentration than conductivity enhancing impurity in the outer second portion. In another implementation, the floating gate is formed from a first layer of conductively doped semiconductive material and a second layer of substantially undoped semiconductive material. In another implementation, the floating gate is formed from a first material having a first average grain size and a second material having a second average grain size which is larger than the first average grain size.
摘要:
An insulating barrier extending between a first conductive region and a second conductive region is disclosed. The insulating barrier is provided for tunnelling charge carriers from the first to the second region, the insulating barrier comprising a first portion contacting the first region and a second portion contacting the first portion and extending towards the second region, the first portion being substantially thinner than the second portion, the first portion being constructed in a first dielectric and the second portion being constructed in a second dielectric different from the first dielectric, the first dielectric having a lower dielectric constant than the second dielectric.
摘要:
A semiconductor device (200) comprising a semiconductor substrate (210) having a well (220) located therein and a first dielectric (250) located over the well (220). The semiconductor substrate (210) is doped with a first type dopant, and the well (220) is doped with a second type dopant opposite to that of the first type dopant. The semiconductor device (200) also comprises first and second electrodes (310, 320), wherein at least the first electrodes (310) are located over the well (220) and first dielectric (250). A second dielectric (510) may be located between the first and second electrodes (310, 320).
摘要:
A pixel structure comprising a thin film transistor, a pixel electrode, a scan line, a data line and an alignment mark. The alignment mark is formed beneath the data line. Misalignment is assessed through the degree of shifting between the alignment mark and the data line relative to each other. In addition, misalignment is also gauged through the degree of shifting between the alignment mark and the channel layer within the thin film transistor relative to each other.
摘要:
A non-volatile memory (NVM) array including a plurality of 2-bit NVM transistors arranged in a plurality of rows extending along a first axis, and a plurality of columns extending along a second axis, perpendicular to the first axis. The non-volatile memory array includes a plurality of field isolation regions located in a semiconductor substrate and a plurality of word lines extending over the semiconductor substrate along the first axis, wherein the word lines form control gates of the 2-bit NVM transistors. Oxide-nitride-oxide (ONO) structures are formed between the substrate and the word lines, wherein the nitride layer provides floating gate storage for the NVM transistors. A plurality of H-shaped source/drain regions are defined by the field isolation regions and the word lines, wherein each source/drain region serves as a source/drain for four different NVM transistors in the array.
摘要:
A zero power memory cell includes first and second NMOS transistors and a PMOS transistor, wherein the first NMOS transistor and first PMOS transistor each include a three-implant channel region, and wherein the second NMOS transistor further includes a two-implant channel region.
摘要:
A non-volatile memory cell having a symmetric cell structure is disclosed. The non-volatile memory cell includes a substrate, a tunnel oxide layer, two floating gates, a dielectric layer, a plurality of spacers, a control gate, and two split gates. The substrate has at least two sources and a drain that is located between the sources. The floating gates are formed on the tunneling oxide layer, and each of floating gates is located between each source and the drain. The dielectric layer is formed on the floating gates. The control gate is formed over the drain and is between the floating gates. The split gates are located adjacent to outward sidewalls of the floating gates, respectively. Therefore, each of the split gates is opposite to the control gate through each of the floating gates.