摘要:
A ceramic composite is provided comprising ceramic fibers and microparticles bound together as a porous matrix with a ceramic binder. The ceramic composite is particularly useful for transporting cryogenic fluids.
摘要:
The invention relates to a method of manufacturing a superconducting device, which comprises the steps of forming on a principal surface of a substrate a non-superconducting oxide layer having a similar crystal structure to that of a c-axis oriented oxide superconductor thin film and a flat-top projection at its center portion, forming a c-axis oriented oxide superconductor thin film having an extremely thin thickness on the non-superconducting oxide layer so as to form a superconducting channel on the projecting portion of the non-superconducting oxide layer, forming an insulating layer on the c-axis oriented oxide superconductor thin film so as to form a gate insulating layer on the superconducting channel, and forming an a-axis oriented oxide superconductor thin film so as to form a superconducting source region and a superconducting drain region of which upper surfaces have the same level as that of the superconducting channel. The projecting portion of the non-superconducting oxide layer is preferably formed by a lift-off process using a lift-off layer formed of a CaO layer covered with a Zr layer which is removed by utilizing water and the following reaction:CaO+H.sub.2 O.fwdarw.Ca(OH).sub.2.
摘要:
A superconducting device comprising a substrate having a principal surface, a superconducting source region and a superconducting drain region formed of an oxide superconductor on the principal surface of the substrate separated from each other, an extremely thin superconducting channel formed of the oxide superconductor between the superconducting source region and the superconducting drain region. The superconducting channel electrically connects the superconducting source region to a superconducting drain region, so that a superconducting current can flow through the superconducting channel between the superconducting source region and the superconducting drain region. The superconducting device comprises a gate electrode through a gate insulator on the superconducting channel for controlling the superconducting current flowing through the superconducting channel, and non-superconducting oxide layers having a similar crystal structure to that of the oxide superconductor. The non-superconducting oxide layers contact with at least the superconducting source region and the superconducting drain region. In the superconducting device, the superconducting channel, the superconducting source region and the superconducting drain region are formed of one oxide superconductor thin film of which the center portion is c-axis oriented and the both ends are a-axis oriented.
摘要:
A superconducting device comprising a substrate having a principal surface, a non-superconducting oxide layer having a similar crystal structure to that of the oxide superconductor, a first and a second superconducting regions formed of c-axis oriented oxide superconductor thin films on the non-superconducting oxide layer separated from each other and gently inclining to each other, a third superconducting region formed of an extremely thin c-axis oriented oxide superconductor thin film between the first and the second superconducting regions, which is continuous to the first and the second superconducting regions.
摘要:
There is disclosed a superconducting microwave component including a first substrate having a conductor line formed of an oxide superconductor on the surface thereof, a second substrate having a grounding conductor formed of an oxide superconductor on the surface thereof, and a package of a conducting material housing the first and the second substrates so that they are substantially parallel with each other. At least one portion of the grounding conductor is in contact with the inside of the package, through surface contact.
摘要:
A multi-layer microstrip structure includes a substrate and a first superconducting layer deposited on the substrate. A first dielectric layer, made at least partially of benzocyclobutene (BCB), is deposited on the first superconducting layer. Additional superconducting dielectric and superconducting layers can be employed. Preferably the superconducting layers are made from niobium. The multilayer microstrip structure is ideally suited for use in passive circuit components of microwave circuits and in multi-chip modules.
摘要:
A superconducting device has a stacked structure including a first superconducting layer, a first insulating layer, a second superconducting layer, a second insulating layer and a third superconducting layer stacked on a substrate in this given order. The stacked structure has an end surface portion extending from the first insulating layer to the second insulating layer. A fourth superconducting layer is formed to cover the end surface of the stacked structure. A third insulating layer separates the stacked structure end surface and the fourth superconducting layer. The fourth superconducting layer is electrically connected to the first and third superconducting layers but is isolated from the second superconducting layer by the third insulating layer. The first through fourth superconducting layers are formed of an oxide superconductor thin film. A silicon containing layer is formed adjacent to at least one of the first, third and fourth superconducting layers, but is not in direct contact with the other superconducting layers.
摘要:
For manufacturing a superconducting device, a first oxide superconductor thin film having a very thin thickness is formed on a principal surface of a substrate, and a stacked structure of a gate insulator and a gate electrode is formed on a portion of the first oxide superconductor thin film. A second oxide superconductor thin film is grown on an exposed surface of the first oxide superconductor thin film, using the gate electrode as a mask, so that first and second superconducting regions having a relatively thick thickness are formed at opposite sides of the gate electrode, electrically isolated from the gate electrode. A source electrode and a drain electrode are formed on the first and second oxide superconducting regions. The superconducting device thus formed can function as a super-FET.
摘要:
A superconducting device comprises a substrate having a principal surface and a non-superconducting oxide layer having a similar crystal structure to that of the oxide superconductor, which has a projection at its center portion. A superconducting source region and a superconducting drain region formed of an .alpha.-axis oriented oxide superconductor thin film are positioned at the both sides of the projection of the non-superconducting oxide layer separated from each other and an extremely thin superconducting channel formed of a c-axis oriented oxide superconductor thin film is positioned on the projection of the non-superconducting oxide layer. The superconducting channel electrically connects the superconducting source region to the superconducting drain region, so that superconducting current can flow through the superconducting channel between the superconducting source region and the superconducting drain region. This superconducting device further includes a gate electrode through a gate insulator on the superconducting channel for controlling the superconducting current flowing through the superconducting channel. In the superconducting device the upper surfaces of the superconducting source region and the superconducting drain region have the same level as that of the superconducting channel.
摘要:
A field-effect structure formed on a substrate and comprising a channel with source and drain as well as a gate that is separated from the channel by an insulating layer. The channel is made of a high T.sub.c metal-oxide superconductor, e.g., YBaCuO, having a carrier density of about 10.sup.21 /cm.sup.3 and a correlation length of about 0.2 nm. The channel thickness is preferrable in the order of 1 nm. The superconductor is preferably a single crystalline and oriented such that the superconducting behavior is strongest in the plane parallel to the substrate. With a signal of a few volts applied to the gate, the entire channel cross-section is depleted of charge carriers whereby the channel resistance can be switched between a "zero resistance" (undepleted, superconducting) state and "very high resistance" (depleted state).