Abstract:
A mixed semiconductor-superconductor platform is fabricated in phases. In a masking phase, a dielectric mask is formed on a substrate, such that the dielectric mask leaves one or more regions of the substrate exposed. In a selective area growth phase, a semiconductor material is selectively grown on the substrate in the one or more exposed regions. In a superconductor growth phase, a layer of superconducting material is formed, at least part of which is in direct contact with the selectively grown semiconductor material. The mixed semiconductor-superconductor platform comprises the selectively grown semiconductor material and the superconducting material in direct contact with the selectively grown semiconductor material.
Abstract:
An integrated superconductor device may include a substrate base and an intermediate layer disposed on the substrate base and comprising a preferred crystallographic orientation. The integrated superconductor device may further include an oriented superconductor layer disposed on the intermediate layer and a conductive strip disposed on a portion of the oriented superconductor layer, The conductive strip may define a superconductor region of the oriented superconductor layer thereunder, and an exposed region of the oriented superconductor layer adjacent the superconductor region.
Abstract:
A method of forming a superconductor includes exposing a layer disposed on a substrate to an oxygen ambient, and selectively annealing a portion of the layer to form a superconducting region within the layer.
Abstract:
An improved microfabrication technique for Josephson junctions in superconducting integrated circuits, based on the use of a double-layer lithographic mask for partial anodization of the side-walls and base electrode of the junctions. The top layer of the mask is a resist material, and the bottom layer is a dielectric material chosen so to maximize adhesion between the resist and the underlying superconducting layer, be etch-compatible with the underlying superconducting layer, and be insoluble in the resist and anodization processing chemistries. The superconductor is preferably niobium, under a silicon dioxide layer, with a conventional photoresist or electron-beam resist as the top layer. This combination results in a substantial increase in the fabrication yield of high-density superconducting integrated circuits, increase in junction uniformity and reduction in defect density. A dry etch more compatible with microlithography may be employed.
Abstract:
High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods for making such high-Tc superconducting products. Completely sealed high-Tc superconducting ceramic oxide provides are made by a macroscopic process including the steps of pressing a superconducting ceramic oxide powder into a hollow body of a material inert to oxygen; heat treating the superconducting ceramic oxide powder packed body under conditions sufficient to sinter the ceramic oxide powder; and then sealing any openings of the body. Optionally, a waveform or multiple pulses of alternate magnetic filed can be applied during the heat treatment. The microscopic method of producing a high-Tc superconducting ceramic oxide product includes the steps of making a high-Tc superconducting ceramic oxide thin film; optionally sintering the deposited thin film in a magnetic filed; and removing partial oxygen content of the thin film by a scanning tunneling electron treatment machine to form a microscopic insulation layer between two high-Tc superconducting domains of the thin film.
Abstract:
High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods for making such high-Tc superconducting products. Completely sealed high-Tc superconducting ceramic oxide provides are made by a macroscopic process including the steps of pressing a superconducting ceramic oxide powder into a hollow body of a material inert to oxygen; heat treating the superconducting ceramic oxide powder packed body under conditions sufficient to sinter the ceramic oxide powder; and then sealing any openings of the body. Optionally, a waveform or multiple pulses of alternate magnetic filed can be applied during the heat treatment. The microscopic method of producing a high-Tc superconducting ceramic oxide product includes the steps of making a high-Tc superconducting ceramic oxide thin film; optionally sintering the deposited thin film in a magnetic filed; and removing partial oxygen content of the thin film by a scanning tunneling electron treatment machine to form a microscopic insulation layer between two high-Tc superconducting domains of the thin film.
Abstract:
High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods for making such high-Tc superconducting products. Completely sealed high-Tc superconducting ceramic oxide products are made by a macroscopic process including the steps of pressing a superconducting ceramic oxide powder into a hollow body of a material inert to oxygen; heat treating the superconducting ceramic oxide powder packed body under conditions sufficient to sinter the ceramic oxide powder; and then sealing any openings of the body. Optionally, a waveform or multiple pulses of alternate magnetic field can be applied during the heat treatment. The microscopic method of producing a high-Tc superconducting ceramic oxide product includes the steps of making a high-Tc superconducting ceramic oxide thin film; optionally sintering the deposited thin film in a magnetic field; and removing partial oxygen content of the thin film by a scanning tunneling electron treatment machine to form a microscopic insulation layer between two high-Tc superconducting domains of the thin film.
Abstract:
A process for controlling an oxygen content of a non-superconductive or superconductive oxide is provided, in which a beam of particles such as ions, electrons or neutrons or an electromagnetic radiation is applied to the non-superconductive or superconductive oxide of a perovskite type such as YBa.sub.2 Cu.sub.3 O.sub.7-x, thereby increasing or reducing the oxygen content of the oxide at the sites of oxygen in the crystal lattice of the oxide. Furthermore, a superconductive device such as a superconductive magnet, superconductive power transmission wire, superconductive transformer, superconductive shield, permanent current switch and electronic element is made by utilizing the process for controlling the oxygen concentration of the superconductive oxide.
Abstract:
In a method of manufacturing a thin film of a compound oxide, different types of materials for forming the compound oxide are evaporated in vacuum. The evaporated materials are heated and deposited on a substrate to form a thin film. An oxygen ion beam having energy of 10 to 200 eV is implanted in the thin film which is being formed on the substrate. Alignment of the constituting elements is performed on the basis of a substrate temperature and energy of the oxygen ion beam, thereby causing epitaxial growth.