Abstract:
A combustion control system includes: a memory section having stored therein each control data corresponding to each of the models; a switch input section designating setting contents of each model, the setting contents being set for each of the setting items relating to the operation by switched-on/switched-off state of each switch; and an instruction section which instructs the combustion control based on control. The switch input section is provided with at least two groups each being made up of a plurality of switches. An abnormality distinguishing section is provided to distinguish whether on-off states of one group of switches and on-off states of the other group of switches coincide with each other. When the on-off states are distinguished not to coincide with each other, an instruction is given to stop the combustion control. Incomplete combustion is thus prevented even at the time of failure or wrong operation of switches.
Abstract:
A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
Abstract:
Systems and methods for dynamically clearing faults in a power transmission line involve automatically terminating ends of a section of the power line while preserving electrical and/or physical continuity of the power line. The terminating of the ends is reversed at about voltage zero-crossings in the power line to clear a fault.
Abstract:
An electrical circuit comprising a power supply, a load, first and second trunks disposed therebetween and control means adapted to control the electrical status of the first and second trunks, in which the control means comprises monitoring means adapted to monitor the current and/or voltage of the first and second trunks and to detect current and/or voltage events which are indicative of faults occurring thereon, and isolation means adapted to isolate the first or second trunk when the monitoring means detects a current and/or voltage event which is indicative of a fault occurring thereon, in which the first and second trunks are electrically connected and arranged in parallel such that the power supplied to the load is distributed substantially equally between them, and in which the control means comprises compensation means adapted to prevent the isolation means from isolating one of said first or second trunks when a current and/or voltage event which is indicative of a fault occurs thereon which is caused by a fault occurring on the other of the first or second trunks.
Abstract:
Methods and apparatus are provided for detecting a phase current sensor fault in a multi-phase electrical motor. The method comprises, receiving an input torque command T* and measuring a set of feedback signals of the motor including a phase current Ix for each of the phases of the motor, generating direct and quadrature command phase currents Id*, Iq* for the motor corresponding to a value of the input torque command T*, determining a total command current Is=[(Iq*)2+(Id*)2]½, generating a negative sequence current Ineg, where for three phases Ineg=(⅓)[Ia+(α2)Ib+(α)Ic], where α=ej2π/3, combining Ineg and Is to provide a normalized negative sequence current Inn=Ineg/Is, comparing the normalized negative sequence current Inn to a predetermined threshold value INN* to determine the presence of a phase current sensor fault, and executing a control action when Inn>INN*.
Abstract:
A system and method for protecting a power system. A generator is tripped in response to identifying a current on the generator that is greater than a first current threshold for a first time delay. The generator is also tripped in response to identifying the current on the generator that is greater than a second current threshold for a second time delay. The first current threshold is larger than the second current threshold and the first time delay is shorter than the second time delay.
Abstract:
A power supply device for plasma processing, wherein electric arcs may occur, comprises a power supply circuit for generating a voltage across output terminals, and a first switch connected between the power supply circuit and one of the output terminals. According to a first aspect the power supply device comprises a recovery energy circuit connected to the output terminals and to the power supply circuit. According to a second aspect the power supply device comprises an inductance circuit including an inductor and a second switch connected parallel to the inductor. According to a third aspect the power supply device comprises a controller for causing the power supply circuit and the first switch to be switched on and off. The controller is configured to determine a quenching time interval by means of a self-adaptive process. The quenching time interval defines the time interval during which, in an event of an arc, no voltage is generated across the output terminals.
Abstract:
An electronic device that is capable of detecting an abnormal state such that a switching element is unable to be turned off in spite of a drive signal instructing turn-off of the switching element. The device includes a switching element that is driven by controlling a voltage on its control terminal, a drive circuit that controls the voltage on the control terminal of the switching element on the basis on an inputted drive signal to drive the switching element. In cases where there exists a current flowing through the switching element in spite of the drive signal instructing turn-off of the switching element, the drive circuit determines that the switching element is in an abnormal state, and cuts off supply of voltage from a drive power supply circuit to the control terminal of the switching element to thereby turn off the switching element.
Abstract:
A DC/AC inverter substrate includes a voltage abnormality detector circuit. All of a high voltage side detection sensor, a low voltage side detection sensor, and a high-voltage and low-voltage detection sensor in the voltage abnormality detector circuit are disposed without being electrically connected to a secondary side of a transformer or to a connection point. Those detection sensors are not damaged since overvoltage is not applied to the voltage abnormality detector circuit when abnormal discharge occurs because the detection sensors are not electrically connected.
Abstract:
A device for converting an electric current includes at least one phase module having an AC terminal and at least one DC terminal. Phase module branches, each of which is equipped with serially connected submodules, are respectively provided between each DC terminal and each AC terminal. Each submodule is provided with at least one power semiconductor. Semiconductor protecting means are connected in parallel or in series to at least one of the power semiconductors to enable the device to withstand even high short-circuit currents for a sufficient period of time. A method for protecting the power semiconductors of the device, is also provided.