Abstract:
A sub-wavelength anti-reflective diffractive structure is incorporated with a base diffractive structure having a small period to form a high efficiency diffractive structure. In the high efficiency diffractive structure, the anti-reflective structure and/or the base diffractive structure are altered from their ideal solo structure to provide both the desired performance and minimize reflections.
Abstract:
A beam homogenizer that minimizes undesired intensity variations at the output plane caused by sharp breaks between facets in previous embodiments. The homogenizer includes a hologram made up of irregularly patterned diffractive fringes. An input beam illuminates at least part of the hologram. The hologram transmits a portion of the input beam onto an output plane. In doing so, the energy of the input beam is spatially redistributed at the output plane into a homogenized output beam having a preselected spatial energy distribution at the output plane. Thus, the illuminated portion of the output plane has a shape predetermined by the designer of the homogenizer.
Abstract:
An optical coupler reduces differential mode delay in a fiber by reducing an amount of light incident on the fiber in a region in which the refractive index is not well controlled. This region of the fiber is typically in the center of the fiber The optical coupler directs light away from the this region and/or provides a high angle of incidence to any light on this region. A diffuser may be used to reduce sensitivity of the coupler to any fluctutations in the output of the light source. The optical coupler does not need to be offset from the center of the multi-mode coupler. A phase function of an azimuthal mode of the fiber may be imposed on the light beam so that a substantial null on axis is maintained even after propogation of the light beam beyond the depth of focus of the coupler. A diffractive element generating a beam which propogates in a spiral fashion along an axis allows the shape of the beam to be maintained for longer than a depth of focus of the diffractive element.
Abstract:
A wavelength detector includes an optical structure receiving an input beam, the optical structure outputting at least two wavelength dependent two-beam interference signals. Each wavelength dependent two-beam interference signal has a different phase offset. A detector receives the at least two wavelength dependent two-beam interference signals and outputs an electrical signal representative of each wavelength dependent two-beam interference. A processor receives the at least two electrical signals from the detector and generates a composite control signal. The two-beam interference signals may be created by reflecting light off the two surfaces of the optical structure. The different phase offsets may be created by providing a stepped pattern on one of the surfaces of the optical structure. Phase shifting interferometry techniques may be used to determine the wavelength from the periodic signals.
Abstract:
An array of micro-optical components includes at least two micro-optical components. Each micro-optical component includes a refractive surface and a corresponding compensation surface for the refractive surface. The corresponding compensation surface includes a corresponding compensation feature when the refractive surface deviates from a desired optical performance. The micro-optical component provides the desired optical performance. At least two refractive surfaces of the array of micro-optical components are formed to have substantially a same desired optical performance. The array of micro-optical components includes at least one corresponding compensation feature, at least two compensation surfaces of the array of micro-optical components being different from one another. The compensation surface may be created after measuring the refractive surface.
Abstract:
Etching in combination with other processing techniques is used to facilitate alignment of an optical die in an optical system. The optical dies are formed on a wafer level and need to be singulated for use in the optical system. The formation of a precise edge from etching allows more accurate alignment of the optical die in the optical system. The other processing techniques include dicing, sawing, cleaving, breaking and thinning.
Abstract:
Integrated multiple optical elements may be formed by bonding substrates containing such optical elements together or by providing optical elements on either side of the wafer substrate. The wafer is subsequently diced to obtain the individual units themselves. The optical elements may be formed lithographically, directly, or using a lithographically generated master to emboss the elements. Alignment features facilitate the efficient production of such integrated multiple optical elements, as well as post creation processing thereof on the wafer level.
Abstract:
A wavelength monitor includes: a splitter on an optics block dividing an input beam into a first portion and a second portion; a first detector and a second detector; a wavelength selective element in an optical path of one of the first and second portions before a respective detector; and an optical bench on which the splitter, the first and second detectors, and the wavelength selective element are mounted. The optical bench may include a hole through which an application beam, separate from the first and second portions, is to pass. The optical bench may include a reflective surface below an active area of the detectors for directing the light onto the active areas.
Abstract:
A wavelength detector includes a beam splitter block that taps off two spatially separated beams and a linear filter in an optical path of one of the two beams. The linear filter may be provided on the beam splitter block. The linear filter may be a notch anti-reflective filter in the optical path of the application beam. One or both of the beams may be focused on to their respective detectors.
Abstract:
A beam homogenizer that minimizes undesired intensity variations at the output plane caused by sharp breaks between facets in previous embodiments. The homogenizer includes a hologram made up of irregularly patterned diffractive fringes. An input beam illuminates at least part of the hologram. The hologram transmits a portion of the input beam onto an output plane. In doing so, the energy of the input beam is spatially redistributed at the output plane into a homogenized output beam having a preselected spatial energy distribution at the output plane. Thus, the illuminated portion of the output plane has a shape predetermined by the designer of the homogenizer.