Abstract:
In a speech coding apparatus, an input device inputs a mixed speech signal of a plurality of speakers. A separating device analyzes period characteristics of the input mixed speech signal, and separates the same signal into a plurality of single speech signals each associated with a corresponding one of the speakers, based on a result of the analysis. A first extracting device extracts source speech characteristic parameters included in each of the single speech signals. A second extracting device extracts a generic vocal-tract characteristic parameter from the input mixed speech signal. In a speech decoding apparatus, a first input device inputs the source speech characteristic parameters for each of the speakers. A second input device inputs the vocal-tract characteristic parameter. A source speech decoder decodes source speech signals of the respective speakers, based on the source speech characteristic parameters for the speakers and forms a source speech signal for the speakers by synthesizing the decoded source speech signals of the respective speakers. A vocal-tract filter filters the source speech signal for the speakers, based on the generic vocal-tract characteristic parameter, so as to decode a mixed speech signal indicative of mixed speech of the speakers.
Abstract:
Pixel data of a two-dimensional image of an object to be displayed is prepared by an image depicting circuit 1, and pixel data in a VRAM 2 is updated by the thus prepared pixel data. On the other hand, pixel data for a single screen in the VRAM 2 is read per frame cycle from the VRAM 2, and the read pixel data is supplied to a digital to analog converter section 5 through a display controller 4. Color signals R', G', and B' for actual display are prepared based on color signals R, G, and B of a pixel forming the pixel data as well as on the Z value of the object corresponding to the pixel, and the respective pixels are displayed. The most remote the object is away from a viewpoint, the more different the display colors of the object displayed by a display unit 3 become from the original colors; the display colors gradually become white. As a result, an object remote from the viewpoint can be displayed on a screen so as to be hazy in opal.
Abstract:
An integrated circuit has a plurality of circuit elements, each of which is equipped with a power saving device for conserving power. This offers design flexibility to more easily change the number of circuit elements in the integrated circuit. Each circuit element detects the input data with the aid of an input detector circuit. The input detector triggers a timer circuit to measure the time required for the circuit element to process the data. The timer circuit turns on an action flag at the start of the process, and turns off the action flag at the end of the process. When the action flag is on, a switch circuit provides either a clock signal or the power to a main circuit. This allows the main circuit to enter an activation mode. When the action flag is off, the switch circuit either provides a low-speed clock signal or suspends the supply of the clock signal or the power to the main circuit. This allows the main circuit to enter a sleep mode.
Abstract:
An encoding apparatus provided at the transmission side includes a low pass filter, a high pass filter, a nonvoice band detecter, a switch and an adder for separating a speech component and a background noise component from an inputted signal. The low pass filter provides a voice band of the speech component and the high pass filter provides a nonvoice band of the speech component. The nonvoice band component is separated from the background noise portion of the output of the high pass filter and re-combined with the voice band to provide the separated speech component. The separated speech component and the background component are individually encoded by a speech encoder and a noise encoder, respectively, and transmitted. In a decoding apparatus at the reception side, the speech component and the background noise component are individually decoded by a speech decoder and a noise decoder, respectively. The decoded speech component and the background noise component are level-adjusted based upon an appropriate level ratio by level controllers, respectively, and then mixed by an adder and outputted as a reproduced signal.
Abstract:
An encoding/decoding system employing vector quantization realizes a high quality encoding and decoding with decreased quantizing errors, employing a small sized codebook which faithfully represents each of the inputted waveform vectors. An encoding/decoding system includes an encoding apparatus and a decoding apparatus, each having a codebook for storing information vectors representative of a predetermined number of signal patterns and index that determine the information vectors. The encoding apparatus compares a vector representing an object signal to be quantized with each information vector in the codebook, selects an information vector that is closest to the vector and outputs an index for the information vector. The decoding apparatus obtains an information vector corresponding to the index obtained at the encoding apparatus side by referring to the codebook and decodes the object signal. The codebook utilizes a temporary memory connected thereto. The content of the codebook is temporarily moved to the temporary memory when the identity of the speaker changes. The contents of the temporary memory are read out when the original speakers returns to the system.
Abstract:
A method and device for correcting an error in digital data in which data of one frame consists of bit assignment data and plural data each consisting of a bit number assigned by the bit assignment data comprises a step of substituting the plural data by noise data when an error has occurred in the bit assignment data. In one aspect of the invention, a method for correcting an error in digital data in which data of one frame consists of bit assignment data and plural data each consisting of exponential data assigned by the bit assignment data and mantissa data of a number of bits assigned by the bit assignment data, comprising a step of correcting the exponential data on the basis of a preceding frame or on the basis of both preceding and subsequent frame and substituting the mantissa data by noise data when an error has occurred in the bit assignment data. The noise data may be band-limited noise. When an irremediable error has occurred in digital data, generation of an extreme noise is prevented and deterioration of a reproduced tone is thereby prevented.
Abstract:
Integer permutation is performed while a data sequence is transferred between buffers 1 and 2 alternately. Each data piece is divided into four elements and integer permutation is executed with the elements as keys from low-order to high-order elements. In the integer permutation, the data pieces are stored in the storage areas in the buffers in pack relation. To enable this, for each value of each element, a dividing analysis section 10 preliminarily surveys the number of data pieces having the element of such a value, and initializes pointers for specifying areas into which data pieces having the elements of each value are to be written. A digit place setting section 21, a digit place sort section 22, a switch circuit 30, and switches SW1 and SW2 determine the value of the corresponding element of data read from the buffer and guide the pointer required for data write to an address terminal of the buffer from the dividing analysis section 10.
Abstract:
An electronic circuit with an operation self-control function includes an electronic circuit body. A temperature sensor and a temperature-setting circuit detect the temperature of the electronic circuit body as an operating parameter indicative of an operating condition of the electronic circuit body, and a clock/peripheral circuit control circuit operates to restrict the operation of the electronic circuit body according to the detected temperature, to thereby restrain heat generation of the electronic circuit body.